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Colin Lea1, René Vidal2, and Gregory D. Hager1

Abstract— Fine-grained action recognition is important for
many applications such as human-robot interaction, automated
skill assessment, and surveillance. The goal is to predict what
action is occurring at any point in a timeseries sequence. While
recent work has improved recognition performance in robotics
applications, these methods often require hand-crafted features
or large use of domain knowledge. Furthermore these methods
tend to model actions using pointwise estimates of individual
frames or statistics on collections of frames. In this work we
develop a notion of an action primitive that models how generic
features transition over the course of an action. Our Latent
Convolutional Skip Chain Conditional Random Field (LC-SC-
CRF) model learns a set of interpretable and composable action
primitives. We apply our model to the cooking and robotic
surgery domains using the University of Dundee 50 Salads
dataset and the JHU-ISI Gesture and Skill Assessment Work-
ing Set (JIGSAWS). Each consists of multimodal timeseries
data including video, robot kinematics, and/or kitchen object
accelerations. Our recognition performance on 50 Salads and
JIGSAWS are 18.0% and 5.3% higher than the state of the
art. Our model has the advantage of being more general than
many recent approaches and performs well without requiring
hand-crafted features or intricate domain knowledge. Upon
publication we will release our LC-SC-CRF code and the
features used on the two datasets.

I. INTRODUCTION

Fine-grained action recognition is important for many
applications like human-robot interaction, automated skill
assessment of complex tasks, and surveillance. These sys-
tems have the potential to change the way people inter-
act with the world and with each other by automatically
recognizing and evaluating human actions. The focus of
this work is to predict a sequence of actions given video,
robot kinematics, and/or other sensor information. For ex-
ample, in a cooking task, the activity make sandwich

might start with the action put bread on plate, transition into
add mustard to bread, then place meat on bread, and finish
with place bread on sandwich.

There are many subtleties to fine-grained action recogni-
tion that make it a difficult problem. There is often large
variability in how an action is performed, how long it takes
to perform that action, and in what order actions take place.
In the cooking example different users may add different
ingredients to the sandwich. Some actions may require
a specific order while others may have several common
variations.
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Fig. 1. (left) A sequence from the 50 Salads dataset (right) A sequence from
the Suturing task in the JHU-ISI Gesture and Skill Assessment Working Set
(JIGSAWS). Directly below each photo is the sequence of actions performed
throughout each video. The bottom depicts the stream of timeseries features
where each row is a different feature type.

In efforts to model how the scene changes over time we
introduce a notion of an action primitive that is composed
of convolutional filters. These non-linearly model how the
features (e.g. positions, object state) transition through an
action. Our action primitives are motivated by recent work
in deep learning where similar filters are learned in a
Convolutional Neural Network (CNN) to perform tasks like
object classification. One important difference here is that
our filters are more interpretable because we learn them per
action instead of among all actions.

We introduce the Latent Convolutional Skip-Chain Con-
ditional Random Field (LC-SC-CRF) for joint temporal
segmentation and action classification. This is a general-
ization of the Skip Chain Conditional Random Field (SC-
CRF) of Lea et al. [6] which achieves high performance on
surgical action recognition. Our variation models multiple
variations on each action. For example the action peeling
may now consist of three action primitives: pick up peeler,
peel cucumber, and put down peeler.

Lastly, we suggest the use of two evaluation metrics that
are important for practical applications of action recognition.
The first is a modified overlap score that gives a high
score for correctly predicting the temporal segmentation. The
second is a segmental edit score which gives a high score
for predicting the correct order of actions in a sequence.

We target applications in cooking and robotic surgery
and evaluate on two datasets. For cooking we use the
University of Dundee 50 Salads dataset to recognize actions,
such as cutting, mixing, peeling, performed while making
a salad. This dataset includes data from an RGBD sensor





and a set of accelerometers located on kitchen utensils. For
robotic surgery we evaluate on the JHU-ISI Gesture and Skill
Assessment Working Set (JIGSAWS) which contains videos
and robot kinematic data of users performing training tasks
like suturing, needle passing, and knot tying. These were
collected from a DaVinci surgical robot and are also used
for automated skill assessment.

We make the following contributions:
• we model a set of interpretable action primitives using

convolutional filters
• we develop the Latent Convolutional Skip Chain CRF
• we suggest two important evaluation metrics for prac-

tical robotics applications.
Our LC-SC-CRF code will be released as an opensource

library called Struct.jl.1. We will also release the features
used on 50 Salads and JIGSAWS.

II. RELATED WORK

Some recently applications of fine-grained action recognition
are in the domains of cooking [7], [12], [14], [15], robotic
surgery, human-robot assembly [20], [3], household
tasks [5], [4], and sports [8], [11],

Cooking: Ramirez-Amaro et al. [12] look at two cooking
tasks in a setup where they can easily detect relevant objects
and the hands of a user. They claim that complicated
temporal models are unnecessary in situations where the
features are highly accurate. They use semantic reasoning
(via a decision tree) with simple predicates like hand moving
and object in hand to classify fine-grained cooking actions.
While their claim may be true in specific applications,
contrary to our approach, their method may not work well
in domains where there is high variability in features. Lei
et al. [7] approach a similiar problem to ours except that
they assume known temporal segmentation. They recognize
a set of cooking tasks like “‘making a cake” by modeling
the objects and user’s hand trajectories. Their approach
is based on histograms of trajectory features within each
action segment. Stein and McKenna [14] introduce the 50
Salads dataset. They derive a set of features based on object
locations and object use and set a baseline using standard
frame-wise models like Naive Bayes and Random Decision
Forests.

Surgical action recognition: recent models include
variations on HMMs [16], [19], [13], Linear Dynamic
Systems (LDS) [19], and Linear Chain CRFs [17], [6].
These HMMs and CRFs assume that each action can be
classified solely using the features at an individual frame.
The Switching LDS [19] partitions the data into chunks
(e.g. 15 frames), fits an LDS this chunk, and transitions
between states. The Switching LDS is similar in spirit
to the our action primitives, however, our convolutional

1Code will be available here before publication: https://github.
com/colincsl/struct.jl

filters can learn nonlinear changes within an action. Tao
et al. [17] propose a Markov Semi-Markov model for
doing joint segmentation and action recognition. They infer
action segments as a function of many frames. However the
segments are modeled simply using the mean of the features
within a segment.

Human Robot Assembly: Vo and Bobick [20] introduce
the Sequential Interval Network for timeseries prediction
of human-robot interaction applications. They develop a
segmental model that requires a user-defined task plan. Their
model takes the task model in the form of a Context Free
Grammar and converts it into a Dynamic Bayes Network for
predicting the start, stop, and action type of each segment.
They apply it to a toy assembly task dataset and in [3] apply
it to human robotic interaction. Their features are based on
detected hand positions and a set of known bin locations
at the start and end of each action and the duration of a
segment.

Other areas: Koppula and Saxena [5] propose a CRF
model that captures the relationships among objects and
between actions and objects for activities of daily living.
These interactions are defined between different temporal
segments which are generated by sampling and evaluating
many different temporal and object relationship graph
structures. Hu et al. [4] work in this same domain but uses
a latent Conditional Random Field where nodes correspond
to the data, actions, and action primitives. They perform
inference in their loopy graph efficiently by collapsing the
latent variable to make the graph a linear chain. Yezhou
et al [?], [?] learn how objects change as a consequence
of an action. For example, in a cutting task they model
the transition from a whole cucumber to two halves as a
change from one segment to two. While this work provides
interesting insights into action-object relationships, it is
unclear if it would work in complicated environments.

III. ACTIVITY MODEL

In this section we start by introducing our action primitive
representation and describe the temporal model. Then we
discuss how to learn the parameters of our model using
a Latent Structural Support Vector Machine and how to
perform inference. Let the variable X

t

be a set of features
(e.g. positions, velocities) at time t for t 2 {1, . . . , T} and
Y
t

be the corresponding action (e.g. cutting, peeling). Let y
be any label in our action set Y .

A. Action Primitives
Our goal is to learn a representation for an action that

describes how the world changes over the course of an action.
Here we describe three models: a common pointwise model,
an action primitive, and a set of latent action primitives.
These are displayed in figure 2.

Common timeseries models (e.g. HMMs, CRFs) typically
use pointwise estimates of an action. We say this is pointwise
because it only captures a statistic on the data; it does not



Fig. 2. Action primitives for the class cutting (left) traditional weight vector
applied to a single frame (middle) our convolutional action primitives (right)
our latent action primitive that models an action using multiple parts.

capture how the features change over time. We compare
against the most common pointwise function which is simply
a linear combination of weight vector w for action y and the
data at time t:

�(X, y, t) = w
y

X
t

(1)

We define an action primitive as a convolutional filter
which we learn. These filters nonlinearly model how features
change over the course of a specific action. We define a
weight matrix (“filter”) w that represents a given action.2 For
each action we learn a single filter of size F ⇥d where F is
the number of features and d is the duration of the primitive.
The column of each filter corresponds to the features at each
timestep within an action. Ideally the duration would cover
the entire length of each action. However, because actions of
widely varying lengths we choose it to be around the average
length of a segment. The score of our classifier is given by
the following where ? is the convolution operator:

�(X, y, t) = w
y

?X
t:t+d

(2)

This 2D convolution results in a scalar score for time t.
Note for later that this convolution can be rewritten as a
dot product of the vectorized filter w and data X

t:t+d

.
In practice actions can last different amounts of time.

For example, in a cutting action, one person may pause in
between picking up a knife and cutting a vegetable. Thus, it
may be advantageous to learn a separate model for different
parts of an action such as the start, middle, and end. We
now define a set of composable action primitives using latent
variables which represent these temporal subsets of an action.

Let h
t

be the latent state at time t. We define a new set
of filters wh

y

for h = 1 . . . H and each class y. These will
be initialized by dividing each action into H segments and
learning an initial set of parameters. We want our action
score to be high regardless of which latent state we are in.
The score for any hidden state is:

�(X, y, h, t) = wh

y

?X
t:t+d

(3)

Our energy function will maximize over the best scoring
filters h

t

. In practice we find that the optimal number of
hidden states H is less than 5 for our applications.

2Here we define the weights and data in terms of matrices to help build
intuition for the reader. For learning these terms are vectorized.

Fig. 3. Our Latent Convolutional Skip Chain CRF. We depict an example
action primitive overlaid from t to t+d. Note that for clarity we only depict
nodes for intervals 0, d, and 2d. There are additional chains covering the
rest of the timesteps.

In Section IV we compare the traditional, action primitive,
and latent action primitive models.

B. Temporal Model

The LC-SC-CRF adds a cost for transitioning from action-
to-action and a cost for an action that occurs at specific points
in time. For a depiction of our model see figure 3.

Given a sequence of data X and labels Y we define an
energy E(X,Y ) as

E(X,Y ) = max

h

>X

t=1

�(X,Y, h, t) +  (Y, h, t) + ⇡(Y, t)

(4)

where �,  , and ⇡ are the scores for action primitives,
pairwise skip-frame actions, and temporal priors respectively.
In our experiments we evaluate using each variation of �.
The pairwise and prior terms are described below.

Note that in a probabilistic setting this model can be
viewed as a Latent Conditional Random Field using the
Gibbs distribution P (Y |X) =

1
Z

exp(�E(X,Y )) with parti-
tion function Z. Sometimes this type of model is also simply
referred to as a Latent Structural Support Vector Machine.

1) Pairwise Skip-frame Score: The pairwise skip-frame
term is a generalization of the common Markov class
transition potential. In activity data, actions do not change
frequently and thus the typical Markov assumption biases
the predictions to stay in the same class from time t� 1 to
t. Instead we model the class transitions from time t � d
to t. Using this model the probability of an action changing
from class a to class b between timesteps is much higher.
Parameter d is called the skip length and is chosen via cross
validation. Empirically this has shown to have a large effect
on accuracy.

The skip-frame term is modeled as a function where index
(y

t�d

, y
t

) is the corresponding skip transition weight and 0
everywhere else. The score is

 (y, y0) = w
y,y

0 (5)

In the latent variable case we use pairwise transitions that
are a function of the latent variables corresponding to each
class. For example we compute the transition from “start” to
“end” variables in cutting.



2) Boundary Priors: In fine-grained applications there are
often many different sequence orderings that all constitute
the same activity. For example, if you are making a peanut
butter and jelly sandwich you can spread peanut butter on
bread before jelly or after. However, often there are only one
or two ways to start and end a sequence. For example, you
must start the sandwich making activity by picking up the
bread.

To better classify these boundary actions we add a start
bias ⇡

s

for what action class occurs at the beginning of a
sequence and an end bias ⇡

e

for the action at the end of the
sequence. These are modeled as follows where 1[a] is 1 if
a is true and 0 if it is false:

⇡
s

(y, t) = w
y

1[t < d] (6)
⇡
e

(y, t) = w
y

1[T � d < t  T ] (7)

In practice we add the priors to frames t = 1 . . . d and t =
T � d . . . T .

We also add a per-class bias at each timestep to weigh the
likelihood of any class occurring:

⇡
c

(y) = w
y

(8)

If a class occurs more frequently then it will have a higher
bias. We collect all prior terms into ⇡(y, t) = ⇡

s

(y, t) +
⇡
e

(y, t) + ⇡
c

(y, t).

C. Learning
All of the aforementioned terms can be written as a linear

function of w:

E(X,Y ) = max

h

TX

t=1

w>
 (X,Y, h, t) (9)

 is the concatenation of all unweighted and vectorized
energy terms for a given timestep. Using the convolutional
action primitives this is:

 (X,Y, h, t) =
TX

t=1

w>

2

66664

X
t:t+d

1[y = Y
t�d

]1[y0 = Y
t

]

1[t < d]
1[T � d < t  T ]

1

3

77775
(10)

Recent work has shown that jointly learning parameters
w of a CRF using the Structural Support Vector Machine
(SSVM) objective [18] often achieves superior accuracy
compared to probabilistic alternatives [21], [9]. Our action
primitives contain latent variables so we use the Latent Struc-
tural Support Vector Machine [22]. This objective models
the upper bound on the empirical risk of our data using the
loss function �. We define �(Y ⇤, Y, h⇤, h) as the Hamming
distance given the ground truth labeling Y ⇤ and any arbitrary
labeling Y :

�(Y ⇤, Y, h⇤, h) =
TX

t=1

1[Y ⇤
t

6= Y
t

] (11)

This loss is analogous to the framewise accuracy we evaluate
with later.

We minimize the LSSVM using the Convex Concave
Procedure [22]. This is an alternating minimization method
that alternates between updating the hidden states h

t

at
each timestep and then updating the weights using gradient
descent. We use Stochastic Gradient Descent where the step
size is computed dynamically with Adagrad [1]. Mathemtical
details of the LSSVM are beyond the scope of this paper.
For a recent overview on these models and methods see [10].
Note that for each term in our energy we initialize the latent
weights by dividing each action into H pieces (corresponding
to the H latent variables per class) and performing KMeans
clustering. In the case where we have two latent states this
encourages the latent parameters to fit to the start and end
of each action.

D. Inference

We infer the best possible labeling Y =

argmax

Y

E(X,Y ) by maximizing the cost of all potentials
 at each frame using a slightly modified version of
Viterbi decoding. During inference, we compute a score
V
t,y

for each label y at all timesteps t. V is a table of size
T ⇥ C where T is the total time and C is the number of
classes. This is a dynamic programming problem where
V
t,y

= max

y

0 V
t�d,y

+ w>
 (X, y, y0, t). We output the

best labeling Y by backtracking through the table of scores
to find the best scoring sequence. The difference between
traditional Viterbi decoding and our algorithm is that we
keep a separate table for each skip chain. We then interlace
each chain to compute our final prediction. See [6] for
more details. Computational complexity is on the order of
O(TC2

) operations and O(TC) memory.
Viterbi decoding can be easily modified to run in an online

fashion because each step in our energy function is simply a
function of the current chunk of data and the previous action
class. Instead of backtracking from T to 1 we backtrack from
time t to 1 to find the best sequence so far.

1) Filtering: One caveat to using a frame-wise inference
method, like Viterbi, is that it operates on a frame-by-frame
basis. Coupled with our skip frame transition features we find
it prone to over-segmentation; while these features provide
valuable information about action transitions, they occasion-
ally oscillate between states along what should be long
contiguous segments. We experimented with sophisticated
remedies but found that simply applying a median filter to
the predictions works best.

IV. EVALUATION

In this section we define the evaluation metrics, datasets,
and experimental setups.

A. Metrics

We suggest two evaluation metrics that we find important
for practical applications of action recognition. These sug-
gestions correspond to two types of errors which are depicted
in figure 4. We also compare our results with prior work
using accuracy, precision, and recall.



Fig. 4. Our suggested metrics are used to measure two types of errors. The
first is oversegmentation, which is when there are multiple different action
segments contained within what should be one contiguous segment. The
second accounts for temporal offsets in our data. They offsets are sometimes
caused by inter-reviewer variability and should not negatively impact our
performance.

The first score measures how much overlap there is be-
tween the ground truth segments and the predicted segments.
A common metric for this is the Jaccard Index. While this
does a good job at measuring coverage, it does not penalize
for oversegmentation errors. Predictions from models like
the Skip Chain CRF will sometimes add spurious false
labels within what should be a long contiguous segment.
We penalize these errors by defining an overlap score that is
a function of the longest contiguous predicted segment for a
given ground truth segment. The score is:

s
o

(G,P ) =

100

N

MX

i=1

max

j

G
i

\ P
j

G
i

[ P
j

(12)

This score lies in [0, 100] and a higher overlap score is better.
The second metric accounts for slight temporal shifts in

the prediction. In many domains there is large inter-annotator
variability in labeling where temporal boundaries should
be located. In applications like surgical skill evaluation the
ordering of the actions may matter more than the precise
location of the segments. To measure this error we use a
segmental edit score. For each ground truth and predicted
labeling we first output the sequence of actions (independent
of segmentation boundaries). We then compute a normalized
edit distance, s

e

(G,P ), using the Wagner-Fischer algorithm.
To make it easier to interpret the results we show scores for
(1� s

e

(G,P )) ⇤ 100. The best score 100 and the worst is 0.
We also use accuracy, precision, and recall to compare

against prior work. These are defined using TP , FP , TN ,
and FN for true positives, false positives, true negatives, and
false negatives.

Accuracy =

TP + TN

TP + FP + FN + TN
(13)

Precision =

TP

TP + FP
(14)

Recall =

TP

TP + FN
(15)

B. 50 Salads

50 Salads [14] is a multimodal dataset that includes time-
synchronized video, depth, and accelerometer data. There are
50 five- to ten-minute samples of a user making a salad. In

Low-level actions Accuracy Overlap Edit
SC-CRF 44.04 27.69 26.0
LC-SC-CRF (H=1) 44.76 32.17 29.45
LC-SC-CRF (H=3) 46.28 34.3 31.71
Mid-level actions Accuracy Overlap Edit
SC-CRF 51.47 32.98 20.62
LC-SC-CRF (H=1) 52.36 34.4 26.33
LC-SC-CRF (H=3) 55.05 38.42 29.02
High-level actions Accuracy Overlap Edit
SC-CRF 92.85 60.86 57.9
LC-SC-CRF (H=1) 93.26 59.59 64.27
LC-SC-CRF (H=3) 94.06 64.64 63.24

TABLE II
EVALUATION ON THE 50 SALADS DATASET USING THE LOW-LEVEL,

MID-LEVEL, OR HIGH-LEVEL ACTIONS DESCRIBED IN THE TEXT.

total there are 25 users – each of whom makes a salad in
two different videos. As shown in figure 1 a static RGBD
camera is mounted facing down looking at the user preparing
the salad. Each kitchen utensil has an accelerometer attached
that records motion. These can be used to indicate which
tools is being used at any given time. In total there are 10
accelerometers. These are located on the following kitchen
tools: plate, pepper dispenser, bowl, oil bottle, large spoon,
dressing glass, knife, peeler, small spoon, chopping board.

This dataset contains multiple granularities of
action labels. At the coarsest there are three
actions: cut and mix ingredients, prepare dressing,
serve salad. There are 17 mid-level actions including
add vinegar, cut tomato, mix dressing, peel cucumber,
place cheese into bowl, serve salad. and others. At the
low-level each mid-level action is decomposed into “start,”
“core,” and “end.” Results using the low-, mid-, and high-
level action sets are shown in Table II. For all of these label
sets we also add a background class for when no action is
occurring.

Following the work of [14] we also evaluate using 10
labels: add dressing, add oil, add pepper, cut, mix dressing,
mix ingredients, peel, place, serve salad onto plate, and
none. This is a hybrid action set that combines variations on
cutting and placing actions. For example cutting a cucumber
and cutting a tomato belong to the same action.

In our experiments we only use the accelerometer data.
We preproccess the data by using the absolute value of each
signal. We evaluate using 5-fold validation where we train
on 20 users (40 videos) and test on 5 users (10 videos). We
use a skip length and filter length of 200 frames. Table I
(left) shows results using our methods.

C. JHU-ISI Gesture and Skill Assessment Working Set (JIG-
SAWS)

The JIGSAWS dataset [2] has three fine-grained activities
common for robotic surgery training. These activities are
perfomed on benchtop phantoms and include suturing, needle
passing, and knot tying. See figure 1 for an example of
suturing. These activities are each decomposed into about 10
unique action primitives such as inserting needle into skin,



50 Salads JIGSAWS
Models Accuracy Overlap Edit
Linear Chain CRF 71.54 48.40 44.82
SC-CRF (no filter) 76.61 33.05 4.77
SC-CRF (H=1) 77.47 59.42 51.92
SC-CRF (H=2) 79.23 62.26 54.25
SC-CRF (H=3) 78.83 60.12 52.6
SC-CRF (H=4) 79.23 62.39 52.86
LC-SC-CRF (H=1) 81.70 64.24 56.89
LC-SC-CRF (H=2) 81.69 64.67 56.87
LC-SC-CRF (H=3) 81.39 64.55 58.46
LC-SC-CRF (H=4) 81.75 64.90 58.08

Models Accuracy Overlap Edit
Linear Chain CRF 74.55 77.58 62.92
SC-CRF (no filter) 78.57 74.47 21.74
SC-CRF (H=1) 79.25 86.00 71.34
SC-CRF (H=2) 82.10 87.36 75.18
SC-CRF (H=3) 81.48 87.55 74.94
SC-CRF (H=4) 82.55 88.32 72.71
LC-SC-CRF (H=1) 81.69 88.55 78.91
LC-SC-CRF (H=2) 83.18 88.78 78.69
LC-SC-CRF (H=3) 82.37 86.77 77.57
LC-SC-CRF (H=4) 83.45 88.88 76.86

TABLE I
RESULTS ON 50 SALADS AND JIGSAWS. SC-CRF IS THE SKIP FRAME CRF, LC-SC-CRF IS THE LATENT CONVOLUTIONAL SKIP CHAIN CRF,

H = h DEFINES THE NUMBER OF LATENT VARIABLES, NO FILTER IMPLIES SMOOTHING IS NOT USED.

tying a knot, transferring needle between tools, and drop-
ping the needle at the end point. Each task has between 26
and 39 trials performed by up to 8 users. Videos are around
two minutes long and contain 15 to 20 action primitives per
video.

The data includes video and robot kinematics from a
DaVinci medical robot. In this paper we use the robot
kinematics and vision-based features as described in [6].
The features are: left and right tool positions, velocities, and
gripper angles as well as the distance from the tools to the
closest object in the scene from the video.

We evaluate on the suturing task using Leave One User
Out as described in [2]. In each split we train on seven users
and test on the left out user. We use a skip length and action
primitive duration of 100 frames. Table I (right) shows the
results using our methods.

V. DISCUSSION

Results: On the 50 Salads dataset we achieve 18.0% higher
precision and 16.5% higher recall than the state of the
art [14] using the LC-SC-CRF. Our precision and recall
for the action primitive model with four hidden states are
79.05% and 79.23%. On 50 Salads our LC-SC-CRF without
latent variables (H=1) tends to achieve about 5% better
accuracy than the SC-CRF. Interestingly the latent variations
tend to perform about the same for various numbers of
latent variables with this model. For the SC-CRF the latent
variables tend to improve performance by a few percent.

Table II depicts our best results on each label set provided
in the 50 Salads dataset. As far as we know there are no
published results using these labels so we can not compare
against prior work. Our performance on the low granularity
labels is very poor. However, given that there are 52 low level
actions we do substantially better than chance (random accu-
racy=1.9%). This is the set that includes “start”, “core”, and
“end” subactions for each action. Some of these subactions,
such as start cutting cucumber and start peeling cucumber,
are indistinguishable when looking at the accelerometer
data. On the mid-level actions there are 18 classes (random
accuracy=5.5%) and we perform somewhat better. Again, in

this set there are actions such as cutting cucumber and cut-
ting cheese that are indistinguishable using the accelerometer
data. In the high-level actions there are only four labels so
it is not surprising performance is very high. Future work
should look into using the video and depth data to help
differentiate between actions using different ingredients like
cutting a tomato versus cutting a cucumber.

On JIGSAWS we achieve 5.3% higher accuracy than the
state of the art [6]. Contrary to 50 Salads, the latent variables
have a larger affect on performance. The overlap scores
improves by 3.4%. and 1.0% for the chain and convolutional
models respectively. Accuracy for the SC-CRF with four
latent variables is only about 1% worse than for the LC-SC-
CRF. The features around the action transitions in this data
tend to vary smoothly, so it is likely that the latent variables
are appropriately capturing the difference between the start,
middle, or end of an action.

In both cases filtering plays an important role in
smoothing out the results. On 50 Salads the overlap scores
improve from 33.05 to 59.42 and 4.77 to 51.92. There is a
smaller but also significant improvement on JIGSAWS. This
improvement is due to the large number of extra segments
created by the skip chain model. These results exemplify
why our proposed metrics do a superior job highlighting
errors in practical applications.

Predictions: Figure 5 shows example prediction sequences
for the two datasets. The top of each figure depicts the
timeseries features from time t = 1 to T . Red is high,
green is neutral, and blue is low. On 50 Salads dark blue
corresponds to the value 0. For a listing of the features see
figure 6. In both datasets it is clear that there are repeating
patterns in the features that are indicative of each action
class. In the Salads dataset change in tool usage tends to
correlate with change in action. In JIGSAWS the features are
sometimes blurred during the transitions between different
actions.

An example sequence from each dataset is shown in
figure 5. The top plot for each shows the raw features
over time. The consecutive plots show the ground truth
and predicted action sequences for several variations of our



model. Each color in a label sequence indicates a unique
action. it is clear that the model without filtering contains
many incorrect frames. The difference between the SC-CRF
and LC-SC-CRF are less extreme but still noticeable. The
segment boundaries tend to be better aligned with the ground
truth and there are fewer oversegmentation issues.

In the Salads dataset it is interesting to see that there are
occasions where the features do not appear to be synced
up exactly with the accelerometer values. For example,
the ground truth labels may indicate that peeling begins
when the user starts to reach for the peeler object. Our
method does not immediately pick up on this action because
we rely solely on the accelerometer data. If we extracted
information from the video it is possible that we would pick
up on these events earlier.

Learned Action Primitives: Some action primitives
learned on 50 Salads and JIGSAWS are shown in Figure 6.
In 50 Salads each object has 3 values for the X, Y, and
Z component of the accelerometer. It is clear that there is
a dominant object that corresponds to each of the actions.
For example in cutting the knife is dominant; in peeling
the peeler is dominant. Notice that other objects sometimes
vary in shade of blue/green. This indicates that they are
sometimes used for a task (perhaps at the beginning or end)
but not in all cases.

In JIGSAW it is common for an action to contain a change
in gripper state. For example when reaching for the needle
the first gripper transitions from open to closed (red to green).
Other actions are often characterized by transitions in tool
positions. See the gradients in the ”Position (right)” features
in position needle and push through tissue. The features in
this case are from the robot kinematics (position, velocity,
and gripper angle) and the relative location of the tools to
the surgical

In both cases it is clear that these action primitives
provide an interpretable way for learning how features
transition throughout an action.

Model: Our action primitives clearly provide a much
richer model of how features change over the course of
an action compared to the traditional pointwise model.
Note, however, that it does not always achieve substantially
improved accuracy. The intuition is as follows. If there
is substantial change in the features over the course of
an action then our action primitive representation should
perform much better than the common pointwise estimate.
If the features throughout an action tend to be similar then
our model may not impact performance. In all datasets we
have evaluated (including data not described here) we have
seen at least a marginal improvement and sometimes a more
substantial improvement.

Failed experiments: Throughout the course of this
research we also looked at several methods for temporal
segmentation and then recognition. In our experience there
is not a single temporal segmentation method that works

well all of the time. One method may work moderately well
on data like 50 Salads but not on JIGSAWS. Furthermore,
it is common to face issues of gross over- (or under-)
segmentation by performing these tasks independently.
If you perform them jointly then you can leverage more
information about each of the action classes in ways that
you typically do not for pure segmentation.

In many domains sparse regularization has been used to
prevent overfitting. We tested our model using the L2, L1,
and L⇤ norms on the weight vector in the SSVM. While
the learned weights using the L1 and L⇤ variants were
more sparse the overall accuracy was several percent worse.
Further investigation into structured sparsity could be used
to find a small subset of features (e.g. cooking utensils) that
are most important for an action.

VI. CONCLUSION

In this paper we introduced a notion of an action primitive
that provides a set of interpretable filters that describe how
features change over time. We showed that our Latent
Convolutional Skip Chain CRF achieves notably higher
performance compared to the models of [6] and [14] on all
metrics. In efforts to promote collaboration we will release
our code and corresponding features for each dataset.
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