
Recognizing Surgical Activities with
Recurrent Neural Networks

Robert DiPietro1, Colin Lea1, Anand Malpani1, Narges Ahmidi1,
S. Swaroop Vedula1, Gyusung I. Lee2, Mija R. Lee2, and Gregory D. Hager1

1 Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
2 Department of Surgery, Johns Hopkins University, Baltimore, MD, USA

Abstract. We apply recurrent neural networks to the task of recog-
nizing surgical activities from robot kinematics. Prior work in this area
focuses on recognizing short, low-level activities, or gestures, and has
been based on variants of hidden Markov models and conditional ran-
dom fields. In contrast, we work on recognizing both gestures and longer,
higher-level activites, or maneuvers, and we model the mapping from
kinematics to gestures/maneuvers with recurrent neural networks. To
our knowledge, we are the first to apply recurrent neural networks to
this task. Using a single model and a single set of hyperparameters, we
match state-of-the-art performance for gesture recognition and advance
state-of-the-art performance for maneuver recognition, in terms of both
accuracy and edit distance. Code is available at https://github.com/

rdipietro/miccai-2016-surgical-activity-rec.

1 Introduction

Automated surgical-activity recognition is a valuable precursor for higher-level
goals such as objective surgical-skill assessment and for providing targeted feed-
back to trainees. Previous research on automated surgical-activity recognition
has focused on gestures within a surgical task [10], [15], [9], [13]. Gestures are
atomic segments of activity that typically last for a few seconds, such as grasp-
ing a needle. In contrast, maneuvers are composed of a sequence of gestures and
represent higher-level segments of activity, such as tying a knot. We believe that
targeted feedback for maneuvers is meaningful and consistent with the subjective
feedback that faculty surgeons currently provide to trainees.

Here we focus on jointly segmenting and classifying surgical activities. Other
work in this area has focused on variants of hidden Markov models (HMMs)
and conditional random fields (CRFs) [10], [15], [9], [13]. HMM and CRF based
methods often define unary (label-input) and pairwise (label-label) energy terms,
and during inference find a global label configuration that minimizes overall
energy. Here we put emphasis on the unary terms and note that defining unaries
that are both general and meaningful is a difficult task. For example, of the
works above, the unaries of [10] are perhaps most general: they are computed
using learned convolutional filters. However, we note that even these unaries
depend only on inputs from fairly local neighborhoods in time.

https://github.com/rdipietro/miccai-2016-surgical-activity-rec
https://github.com/rdipietro/miccai-2016-surgical-activity-rec


Fig. 1: Example images from the JIGSAWS and MISTIC datasets.

In this work, we use recurrent neural networks (RNNs), and in particular long
short-term memory (LSTM), to map kinematics to labels. Rather than operating
only on local neighborhoods in time, LSTM maintains a memory cell and learns
when to write to memory, when to reset memory, and when to read from memory,
forming unaries that in principle depend on all inputs. In fact, we will rely only
on these unary terms, or in other words assume that labels are independent
given the sequence of kinematics. Despite this, we will see that predicted labels
are smooth over time with no post-processing. Further, using a single model
and a single set of hyperparameters, we match state-of-the-art performance for
gesture recognition and improve over state-of-the-art performance for maneuver
recognition, in terms of both accuracy and edit distance.

2 Methods

The goal of this work is to use nx kinematic signals over time to label every
time step with one of ny surgical activities. An individual sequence of length T
is composed of kinematic inputs {xt}, with each xt ∈ Rnx , and a collection of
one-hot encoded activity labels {yt}, with each yt ∈ {0, 1}ny . (For example, if we
have classes 1, 2, and 3, then the one-hot encoding of label 2 is (0, 1, 0)T .) We aim
to learn a mapping from {xt} to {yt} in a supervised fashion that generalizes to
users that were absent from the training set. In this work, we use recurrent neural
networks to discriminatively model p(yt|x1, x2, . . . , xt) for all t when operating
online and p(yt|x1, x2, . . . , xT ) for all t when operating offline.

2.1 Recurrent Neural Networks

Though not yet as ubiquitous as their feedforward counterparts, RNNs have
been applied successfully to many diverse sequence-modeling tasks, from text-
to-handwriting generation [6] to machine translation [14].

A generic RNN is shown in Figure 2a. An RNN maintains a hidden state h̃t,
and at each time step t, the nonlinear block uses the previous hidden state h̃t−1
and the current input xt to produce a new hidden state h̃t and an output m̃t.

If we use the nonlinear block shown in Figure 2b, we end up with a specific
and simple model: a vanilla RNN with one hidden layer. The recursive equation



· · ·

tanh

xt

+

Wx

b

x1 x2 x3

ht�1

Wh

ht

h̃0 h̃1 h̃2

m̃1 m̃2 m̃3

(a) A recurrent neural network.

· · ·

x1 x2 x3
+

h̃0 h̃1 h̃2

m̃1 m̃2 m̃3

xt

ht�1

Wx

Wh b

tanh ht

(b) A vanilla RNN block.

Fig. 2: The generic RNN on the left has a nonlinear block that is not yet specified
and is therefore capable of representing many different models. The nonlinear
block on the right yields a vanilla RNN.

for a vanilla RNN, which can be read off precisely from Figure 2b, is

ht = tanh(Wxxt +Whht−1 + b) (1)

Here, Wx, Wh, and b are free parameters that are shared over time. For the
vanilla RNN, we have m̃t = h̃t = ht. The height of ht is a hyperparameter and
is referred to as the number of hidden units.

In the case of multiclass classification, we use a linear layer to transform m̃t to
appropriate size ny and apply a softmax to obtain a vector of class probabilities:

ŷt = softmax(Wymm̃t + by) (2)

p(ytk = 1 | x1, x2, . . . , xt) = ŷtk (3)

where softmax(x) = exp(x)/
∑

i exp(xi).
RNNs traditionally propagate information forward in time, forming predic-

tions using only past and present inputs. Bidirectional RNNs [12] can improve
performance when operating offline by using future inputs as well. This essen-
tially consists of running one RNN in the forward direction and one RNN in the
backward direction, concatenating hidden states, and computing outputs jointly.

2.2 Long Short-Term Memory

Vanilla RNNs are very difficult to train because of what is known as the van-
ishing gradient problem [1]. LSTM [8] was specifically designed to overcome this
problem and has since become one of the most widely-used RNN architectures.
The recursive equations for the LSTM block used in this work are

x̃t = tanh(Wx̃xxt +Wx̃mmt−1 + bx̃) (4)

it = σ(Wixxt +Wimmt−1 +Wicct−1 + bi) (5)

ft = σ(Wfxxt +Wfmmt−1 +Wfcct−1 + bf ) (6)

ct = it � x̃t + ft � ct−1 (7)

ot = σ(Woxxt +Wommt−1 +Wocct + bo) (8)

mt = ot � tanh(ct) (9)



where � represents element-wise multiplication and σ(x) = 1/(1+exp(−x)). All
matrices W and all biases b are free parameters that are shared across time.

LSTM maintains a memory over time and learns when to write to memory,
when to reset memory, and when to read from memory [5]. In the context of
the generic RNN, m̃t = mt, and h̃t is the concatenation of ct and mt. ct is the
memory cell and is updated at each time step to be a linear combination of x̃t
and ct−1, with proportions governed by the input gate it and the forget gate ft.
mt, the output, is a nonlinear version of ct that is filtered by the output gate ot.
Note that all elements of the gates it, ft, and ot lie between 0 and 1.

This version of LSTM, unlike the original, has forget gates and peephole con-
nections, which let the input, forget, and output gates depend on the memory
cell. Forget gates are a standard part of modern LSTM [7], and we include peep-
hole connections because they have been found to improve performance when
precise timing is required [4]. All weight matrices are full except the peephole
matrices Wic, Wfc, and Woc, which by convention are restricted to be diagonal.

Loss Because we assume every yt is independent of all other yt′ given x1, . . . , xt,
maximizing the log likelihood of our data is equivalent to minimizing the overall
cross entropy between the true labels {yt} and the predicted labels {ŷt}. The
global loss for an individual sequence is therefore

lseq({yt}, {ŷt}) =
∑
t

lt(yt, ŷt) with lt(yt, ŷt) = −
∑
k

ytk log ŷtk

Training All experiments in this paper use standard stochastic gradient de-
scent to minimize loss. Although the loss is non-convex, it has repeatedly been
observed empirically that ending up in a poor local optimum is unlikely. Gra-
dients can be obtained efficiently using backpropagation [11]. In practice, one
can build a computation graph out of fundamental operations, each with known
local gradients, and then apply the chain rule to compute overall gradients with
respect to all free parameters. Frameworks such as Theano and Google Tensor-
Flow let the user specify these computation graphs symbolically and alleviate
the user from computing overall gradients manually.

Once gradients are obtained for a particular free parameter p, we take a small
step in the direction opposite to that of the gradient: with η being the learning
rate,

p′ = p− η ∂lseq

∂p
with

∂lseq

∂p
=

∑
t

∂lt
∂p

3 Experiments

3.1 Datasets

The JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) [2] is a
public benchmark surgical activity dataset recorded using the da Vinci. JIG-
SAWS contains synchronized video and kinematic data from a standard 4-throw



suturing task performed by eight subjects with varying skill levels. All subjects
performed about 5 trials, resulting in a total of 39 trials. We use the same
measurements and activity labels as the current state-of-the-art method [10].
Measurements are position (x, y, z), velocity (vx, vy, vz), and gripper angle (θ)
for each of the left and right slave manipulators, and the surgical activity at each
time step is one of ten different gestures.

The Minimally Invasive Surgical Training and Innovation Center - Science
of Learning (MISTIC-SL) dataset, also recorded using the da Vinci, includes
49 right-handed trials performed by 15 surgeons with varying skill levels. We
follow [3] and use a subset of 39 right-handed trials for all experiments. All trials
consist of a suture throw followed by a surgeon’s knot, eight more suture throws,
and another surgeon’s knot. We used the same kinematic measurements as for
JIGSAWS, and the surgical activity at each time step is one of 4 maneuvers:
suture throw (ST), knot tying (KT), grasp pull run suture (GPRS), and inter-
maneuver segment (IMS). It is not possible for us to release this dataset at this
time, though we hope we will be able to release it in the future.

3.2 Experimental Setup

JIGSAWS has a standardized leave-one-user-out evaluation setup: for the i-th
run, train using all users except i and test on user i. All results in this paper
are averaged over the 8 runs, one per user. We follow the same strategy for
MISTIC-SL, averaging over 11 runs, one for each user that does not appear in
the validation set, as explained below.

We include accuracy and edit distance (Levenshtein distance) as performance
metrics. Accuracy is the percentage of correctly-classified frames, measuring per-
formance without taking temporal consistency into account. In contrast, edit dis-
tance is the number of operations needed to transform predicted segment-level
labels into ground-truth segment-level labels, here normalized for each dataset
using the maximum number (over all sequences) of segment-level labels.

3.3 Hyperparameter Selection and Training

Here we include the most relevant details regarding hyperparameter selection
and training; other details are fully specified in code, available at
https://github.com/rdipietro/miccai-2016-surgical-activity-rec.

For each run we train for a total of approximately 80 epochs, maintaining
a learning rate of 1.0 for the first 40 epochs and then halving the learning rate
every 5 epochs for the rest of training. Using a small batch size is important;
we found that otherwise the lack of stochasticity let us converge to bad local
optima. We use a batch size of 5 sequences for all experiments.

Because JIGSAWS has a fixed leave-one-user-out test setup, with all users
appearing in the test set exactly once, it is not possible to use JIGSAWS for
hyperparameter selection without inadvertently training on the test set. We
therefore choose all hyperparameters using a small MISTIC-SL validation set
consisting of 4 users (those with only one trial each), and we use the resulting

https://github.com/rdipietro/miccai-2016-surgical-activity-rec


Table 1: Quantitative results and comparisons to prior work.

JIGSAWS MISTIC-SL

Accuracy (%) Edit Dist. (%) Accuracy (%) Edit Dist. (%)

MsM-CRF [15] 72.6 — — —

SDSDL [13] 78.7 — — —

SC-CRF [9] 80.3 — — —

LC-SC-CRF [10] 82.5 ± 5.4 14.8 ± 9.4 81.7 ± 6.2 29.7 ± 6.8

Forward LSTM 80.5 ± 6.2 19.8 ± 8.7 87.8 ± 3.7 33.9 ± 13.3

Bidir. LSTM 83.3 ± 5.7 14.6 ± 9.6 89.5 ± 4.0 19.5 ± 5.2

hyperparameters for both JIGSAWS experiments and MISTIC-SL experiments.
We performed a grid search over the number of RNN hidden layers (1 or 2),
the number of hidden units per layer (64, 128, 256, 512, or 1024), and whether
dropout [16] is used (with p = 0.5). 1 hidden layer of 1024 units, with dropout,
resulted in the lowest edit distance and simultaneously yielded high accuracy.
These hyperparameters were used for all experiments.

Using a modern GPU, training takes about 1 hour for any particular JIG-
SAWS run and about 10 hours for any particular MISTIC-SL run (MISTIC-SL
sequences are approximately 10x longer than JIGSAWS sequences). We note,
however, that RNN inference is fast, with a running time that scales linearly
with sequence length. At test time, it took the bidirectional RNN approximately
1 second of compute time per minute of sequence (300 time steps).

3.4 Results

Table 1 shows results for both JIGSAWS (gesture recognition) and MISTIC-
SL (maneuver recognition). A forward LSTM and a bidirectional LSTM are
compared to the Markov/semi-Markov conditional random field (MsM-CRF),
Shared Discriminative Sparse Dictionary Learning (SDSDL), Skip-Chain CRF
(SC-CRF), and Latent-Convolutional Skip-Chain CRF (LC-SC-CRF). We note
that the LC-SC-CRF results were computed by the original author, using the
same MISTIC-SL validation set for hyperparameter selection.

We include standard deviations where possible, though we note that they
largely describe the user-to-user variations in the datasets. (Some users are ex-
ceptionally challenging, regardless of the method.) We also carried out statistical-
significance testing using a paired-sample permutation test (p-value of 0.05). This
test suggests that the accuracy and edit-distance differences between the bidi-
rectional LSTM and LC-SC-CRF are insignificant in the case of JIGSAWS but
are significant in the case of MISTIC-SL. We also remark that even the forward
LSTM is competitive here, despite being the only algorithm that can run online.



0.0 0.5 1.0 1.5

Time (min)

Fig. 3: Qualitative results for JIGSAWS (top) and MISTIC-SL (bottom) using a
bidirectional LSTM. For each dataset, we show results from the trials with high-
est accuracy (top), median accuracy (middle), and lowest accuracy (bottom). In
all cases, ground truth is displayed above predictions.

Qualitative results are shown in Figure 3 for the trials with highest, me-
dian, and lowest accuracies for each dataset. We note that the predicted label
sequences are smooth, despite the fact that we assumed that labels are indepen-
dent given the sequence of kinematics.

4 Summary

In this work we performed joint segmentation and classification of surgical ac-
tivities from robot kinematics. Unlike prior work, we focused on high-level ma-
neuver prediction in addition to low-level gesture prediction, and we modeled
the mapping from inputs to labels with recurrent neural networks instead of
with HMM or CRF based methods. Using a single model and a single set of hy-
perparameters, we matched state-of-the-art performance for JIGSAWS (gesture
recognition) and advanced state-of-the-art performance for MISTIC-SL (maneu-
ver recognition), in the latter case increasing accuracy from 81.7% to 89.5% and
decreasing normalized edit distance from 29.7% to 19.5%.

References

1. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks 5(2), 157–166 (1994)



2. Gao, Y., Vedula, S.S., Reiley, C.E., Ahmidi, N., Varadarajan, B., Lin, H.C., Tao, L.,
Zappella, L., Bejar, B., Yuh, D.D., Chen, C.C.G., Vidal, R., Khudanpur, S., Hager,
G.D.: Language of surgery: A surgical gesture dataset for human motion modeling.
In: Modeling and Monitoring of Computer Assisted Interventions (M2CAI) 2014.
Springer, Boston, USA (2014)

3. Gao, Y., Vedula, S., Lee, G.I., Lee, M.R., Khudanpur, S., Hager, G.D.: Unsuper-
vised surgical data alignment with application to automatic activity annotation.
2016 IEEE International Conference on Robotics and Automation (ICRA) (2016)

4. Gers, F.A., Schmidhuber, J.: Recurrent nets that time and count. In: IEEE Con-
ference on Neural Networks. vol. 3 (2000)

5. Graves, A.: Supervised sequence labelling. Springer, Berlin Heidelberg (2012)
6. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint

arXiv:1308.0850 (2013)
7. Greff, K., Srivastava, R.K., Koutńık, J., Steunebrink, B.R., Schmidhuber, J.:

LSTM: A search space odyssey. arXiv preprint arXiv:1503.04069 (2015)
8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation

9(8), 1735–1780 (1997)
9. Lea, C., Hager, G.D., Vidal, R.: An improved model for segmentation and recog-

nition of fine-grained activities with application to surgical training tasks. In: 2015
IEEE Winter Conference on Applications of Computer Vision (WACV). pp. 1123–
1129. IEEE (2015)

10. Lea, C., Vidal, R., Hager, G.D.: Learning convolutional action primitives for fine-
grained action recognition. 2016 IEEE International Conference on Robotics and
Automation (ICRA) (2016)

11. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Cognitive modeling 5(3), 1 (1988)

12. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans-
actions on Signal Processing 45(11), 2673–2681 (1997)

13. Sefati, S., Cowan, N.J., Vidal, R.: Learning shared, discriminative dictionaries
for surgical gesture segmentation and classification. In: Modeling and Monitoring
of Computer Assisted Interventions (M2CAI) 2015. Springer, Berlin Heidelberg
(2015)

14. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in neural information processing systems (2014)

15. Tao, L., Zappella, L., Hager, G.D., Vidal, R.: Surgical gesture segmentation and
recognition. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) Med-
ical Image Computing and Computer-Assisted Intervention (MICCAI) 2013, Part
III. LNCS, vol. 8151, pp. 339–346. Springer, Berlin Heidelberg (2013)

16. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329 (2014)


	Recognizing Surgical Activities withRecurrent Neural Networks

