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Abstract. Automatic segmentation of laparoscopic recordings into se-
quences of clips is important for analyzing workflow, improving surgical
education, and providing surgeons with automated feedback. Despite in-
creasing interest in this problem, current work almost exclusively relies
on extensive instrumentation, which is difficult and costly to acquire,
and is only evaluated on data collected from individual institutions. In
this work we describe two important methodological findings for video-
based surgical phase segmentation at-large, and additionally, introduce
a new multi-institution surgical phase segmentation dataset. First, we
find that a recent Spatiotemporal Convolutional Neural Network (ST-
CNN), which captures object motion over short time intervals, is supe-
rior at modeling individual surgical phases compared to methods using
spatial CNNs or hand-crafted features. Second, we find that a simple Dy-
namic Time Warping baseline, using the ST-CNN features, outperforms
more sophisticated temporal models. We evaluate on the TUM EndoVis
dataset, which was collected at a single hospital, and our new EndoTube
dataset which was curated from procedures in over a dozen hospitals
around the world. While we achieve state of the art performance on En-
doVis, we show our approaches do not generalize as well to EndoTube
which contains more variability in equipment, video quality, and surgical
style.

1 Introduction

Walk into an operating room for laparoscopic surgery and you will see a plethora
of devices that can be instrumented and used for automatic workflow recognition.
When available, these can be used to recognize surgical events, which may im-
prove operating room efficiency [5], reduce information overload for surgeons [13],
or retrospectively analyze surgical workflow [11]. However, most operating rooms
do not have these devices or do not have a way of recording the data. In this
work we address surgical phase recognition from laparoscopic video which is easy
to collect in most ORs. In particular, we focus on offline solutions for large-scale
workflow analysis that can be performed across multiple institutions.

Recognizing surgical workflow from video is difficult due to large variability
between patients, surgeons, and hospital environments. Patients exhibit sub-
stantial variation in appearance due to differences in anatomy such as varying
levels of fatty tissue. Surgeons tend to have their own style and may perform



surgical phases in different temporal orders. Equipment, such as the endoscope
and instruments, may be unique across hospitals, and can result in varying light-
ing conditions, video quality, and tool appearance. To model these elements of
variability, we decompose surgical phase segmentation into two tasks: (1) learn
a low-level spatiotemporal model that captures how the environment changes
within short time intervals and (2) learn a high-level classifier that captures
phase ordering.

Low-level: Individual surgical phases may be ambiguous but are often defined
by the configurations of objects (e.g. tools, organs), their spatial relationships,
and their motions throughout a sequence. We employ a Spatiotemporal Con-
volutional Neural Net (ST-CNN) [9], which has shown recent success on other
video datasets. This model factorizes video into a spatial component that cap-
tures objects in a scene and a local temporal component that captures how these
objects change over a short period of time (e.g. 60 seconds). For example, during
the clipping phase the ST-CNN may capture the applicator tool motion as it
applies a clip to the artery. One advantage, compared to spatial-only models
(e.g. [15]), is that it explicitly encodes temporal information within the CNN.

High-level: We compare performance with this spatiotemporal CNN in tandem
with three classifiers to investigate the importance of high-level temporal infor-
mation such as sequential phases ordering. First, we compute the most likely
surgical phase using per-frame probabilities from the ST-CNN. Second, we em-
ploy the constrained Semi-Markov Conditional Random Field from [9] which
encodes pairwise relationships between phases. This is similar to the approaches
of [15] and [3]. Lastly, we explore a simple Dynamic Time Warping baseline, in-
spired by Padoy et al. [11], which jointly captures low- and high-level temporal
information using the ST-CNN activations.

The topic of video-based surgical phase recognition from intraoperative la-
paroscopic video across multiple institutions has not been studied extensively in
the literature but is important for many applications such as retrospective skills
assessment [2], workflow analysis [11], and surgical training [8]. Recent datasets,
like EndoVis [1] and Cholec80 [15], have been collected from individual hospitals
and do not capture the amount of variability seen across institutions. Factors
like tool appearance and recording equipment may vary significantly between
hospitals and cause video-based models to fail. We introduce a new dataset,
EndoTube, which consists of 25 cholecystectomy videos from nine countries and
over a dozen hospitals. These videos were carefully curated from procedures up-
loaded publicly by clinicians. In order to compare with current work, we use the
same labels as EndoVis as shown in Figure 1. While performance on this dataset
is significantly lower than EndoVis, we highlight the challenges of surgical data
captured “in the wild” where there are many more types of variability.

Our primary contributions are: (1) exploring the use of spatiotemporal CNNs
for representing surgical phases, (2) comparing three classifiers for capturing high
level temporal information, and (3) performing analysis on EndoTube, our new
multi-institutional Cholecystetomy dataset.



Fig. 1: Example images and sequence labeling from the EndoVis dataset. Phases: (1)
Place trocars (2) Prepare Calots triangle (3) Clip/cut cystic artery and duct (4) Dissect
Gallbladder (5) Retrieve Gallbladder (6) Hemostasis (7a/7b) Drainage/closure/finish.

2 Prior Work

Despite being a nascent area, there has been substantial recent interest in au-
tomated surgical workflow analysis due to publicly available data, promising
initial results, and new methods from the computer vision community that may
be more capable of modeling complex surgical video.

Recent work by Twinanda et al. [15] proposes a CNN-based approach to
surgical phase recognition with a Hierarchical Hidden Markov Model. They
achieve reasonable performance on the (public) EndoVis and (private) Cholec80
datasets, however, their best results on EndoVis require pre-training on a much
larger surgical dataset. While we also use a CNN-based representation, ours
explicitly captures temporal information. Dergachyova et al. [3] show high per-
formance on EndoVis when combining video and tool data with a Hidden Semi-
Markov Model approach, but achieve relatively low accuracy with their video-
only variant compared to [15]. Their approach uses hand-crafted image features
like color histograms, Histogram of Oriented Gradients (HOG), and Local Bi-
nary Patterns (LBP). In both [15] and [3], performance using tool information
is relatively low compared to video. Our model achieves superior performance
using video, tools, and when modalities are combined.

Earlier work showed that using auxiliary data like tool usage can be effective
for workflow analysis [11, 14, 10], however, this requires recording and synchro-
nizing tool data for each surgery which, at scale, is costly and cumbersome.

3 Methods

Our model is comprised of two components: first, we learn a spatiotemporal
feature representation using a Convolutional Neural Network that encodes con-
textual information like tools, organs, and fluids, and models how they change
over time. Second, we build a classifier that takes the spatiotemporal features as
input and classifies surgical phases.



Spatial Component

Temporal Component

Fig. 2: The Spatiotemporal CNN is factorized into spatial and temporal components.
(top) The spatial component consists of spatial units that model the content in each
region of an image. (bottom) The temporal component uses the spatial activations,
ht, as input and convolves a set of learned temporal filters. The output is a set of
activations, st, that encode spatiotemporal information.

While there have been many recent CNN papers, our work is motivated by
Lea et al. [9] who developed an architecture specifically designed for fine-grained
action segmentation. Compared to common CNNs, such as AlexNet [7] and
VGG [12], this model better captures spatial relationships when there is a limited
amount of data, like in the datasets here. This architecture has significantly fewer
parameters which, as a byproduct, makes training and evaluation much faster.

3.1 Spatiotemporal Video Representation

Let It be an RGB image for time t from 1 to T , Zt ∈ {0, 1}z be vector of z
auxiliary signals, and yt ∈ {1, . . . , C} be a phase label. The auxiliary signals can
be tool usage information or phase labels as we describe later and the C phase
labels are listed in Section 4. Given input image It, we compute spatiotemporal
activations st ∈ Rp which is a vector of p latent states.

Spatial Component
The spatial component takes image It and outputs intermediate representation
ht ∈ Rf . This model is composed of spatial units and fully connected layers as
shown in Figure 2. The spatial units use convolutional filters to hierarchically
model the content in each region of an image. The three spatial units, which were
inspired by the VGG architecture [12], consists of a 3 × 3 convolutional layer,
ReLU activation, and 3 × 3 max pooling. Each colored blocks in the depiction
of a spatial unit corresponds to an activation vector in that image region.

The first fully connected layer (FC) consists of latent states, each of which
encodes correlations between each region and the corresponding activations in



that region. For example, a state may capture the tool being in the top right of
the image and the gall bladder being in the middle. Let there be f states in each
fully connected layer ht ∈ Rf which correspond to different scene configurations.

The spatial component is trained using auxiliary data Zt, weight vector W (1)

and bias b(1) such that

Ẑt = gsp(W (1)ht + b(1)) (1)

where Ẑt is the predicted auxiliary signal. When training on the binary tool usage
data, gsp(·) is the sigmoid function so that any learned tool can be predicted as
on or off. When training on the phase labels, gsp(·) is the softmax function such
that only one class can be chosen at a given time.

Temporal Component
Given the scene activations ht the temporal component computes a set of tempo-
ral activations st. We learn temporal convolutional filters that capture how the
spatial information changes over time. Empirically, we see these filters capture
properties like transitions in state at the start or end of an action.

Each of the l filters, W
(2)
l ∈ Rd×f , is convolved along time with the input,

where d is the duration of a filter, b
(2)
l is the bias for each filter:

slt = ReLU(

d−1∑
t′=0

W
(2)
l,t′ ∗ ht+t′ + b

(2)
l ) (2)

For notational convenience ht:t+d ∈ Rd×f corresponds to the sequence of timesteps
from t to t+ d− 1.

The temporal component is trained using phase labels Yt ∈ {0, 1}c, where the
index of the true class is 1 and all other classes are 0. The output is computed
with weights and biases W (3) and b(3):

Ŷt = softmax(W (3)st + b(3)) (3)

Predictions Ŷt correspond to the predicted classes. Note that the input to each
classifier is the spatiotemporal activations st for all time steps.

Implementation Details
Our network is trained using the cross entropy loss function with ADAM [6], a re-
cent method for stochastic optimization. The three spatial units have [32, 64, 96]
convolutional filters, the first fully connected layer has f = 128 states, there
are p = 32 temporal filters, the duration of each filter is d = 60 seconds, and
the output is C = 7 classes. Each input image is 108× 108× 3. Parameters are
based on those used in [9]. Ideally, the spatial and temporal components could be
trained jointly, but due to computational reasons they are learned sequentially.
Our model was implemented using Keras1, a library for developing deep models.

When using multiple data sources, like phase labels and tool information,
tools are concatenated at each timestep with the spatiotemporal features st.
Batch normalization is performed on st, using the standard deviation per-feature,
in order to normalize the scale of different signals.

1 Keras: http://keras.io



Fig. 3: The full models with the Spatiotemporal CNNs and classifiers. (left) Linear
Model (middle) Segmental Model (right) Time-invariant Model

3.2 Surgical Phase Classifier

Our goal is to predict the best phase labeling ŷ = {ŷt}Tt=1 given spatiotemporal
activations s = {st}Tt=1. We compare three classifiers: a frame-wise linear model,
the segmental model of Lea et al. [9], and a time-invariant model based on Dy-
namic Time Warping inspired by Padoy et al. [11].

1) Linear Model (LM): The output of our ST-CNN, Ŷt, is a set of probabil-
ities corresponding to which phase is active at that time. This model simply
takes the most likely phase given the current window of data: ŷt = arg maxc Ŷ

c
t .

2) Semi-Markov Model (SMM): We use the segmental model of Lea et al. [9],
a constrained variation on the Semi-Markov Conditional Random Field, which
jointly infers the start time si, end time ei, and phase label ci for each of the M
segments in a sequence. Compared to traditional linear chain models like Hid-
den Markov Models, the Semi-Markov component captures transitions in phase
across whole segments. As defined in [9], let K be an upper bound on the num-
ber of possible segments in a sequence (e.g. 9 for EndoVis), and Pi be the tuple
〈si, ei, ci〉 for the ith segment.

ŷ = arg max
P1,...,PM

M∑
i=1

ei∑
t=si

Ŷ ci
t s.t. 0 < M ≤ K (4)

This can be computed very efficiently using the method of [9].

3) Time-invariant Model (DTW): We use an approach inspired by Padoy et
al. [11] which achieves high performance on surgical phase recognition from tool
usage data. While inference in this approach is slower than our other models,
because it uses a nearest neighbors approach, it captures both the local changes
in spatiotemporal activations within each segment as well higher-level temporal
ordering of phases. We use superscript (i) to indicate each trial. For test sequence
s(i) we compute the DTW distance [4] to all training sequences s(j):

DTW (s(i), s(j)) = min
c

T∑
t=1

‖s(i)t − s(j)ct ‖1 (5)



where c = {ct}Tt=1 are the correspondences between activations in each sequence.
Prediction ŷ(i) is computed by propagating the labels from sequence j that has

the smallest DTW distance such that ŷ
(i)
t = y

(j)
ct for all times t.

4 Datasets

EndoVis Dataset
The EndoVis surgical phase recognition dataset [1], from the Technical Uni-
versity of Munich (TUM), consists of video, tool usage, and phase labels for
seven laparoscopic cholecystectomy procedures. The procedures were performed
by a small set of surgeons at the same hospital and have similar workflow. Fig-
ure 1 shows an example of each phase. In six of seven procedures the phase or-
der is: Place Trocars, Prep, Clip/Cut, Dissect, Retrieval, Hemostasis, Retrieval,
Hemostasis, Drainage/finish. In one video, there is only one instance each of Re-
trieval and Hemostasis. This dataset also includes tool usage, which was labeled
manually, which indicates the instruments in use at any given time. Tools in-
clude: liver retractor, fan retractor, alligator forceps, PE forceps, irrigation rod,
suction rod, scissors, retrieval bag, plastic clips applicator, metal clips applicator.
We evaluate on EndoVis with Leave One Video Out cross validation.

EndoTube Dataset
We introduce, EndoTube, a dataset that addresses the ability of our models to
generalize to real-world environments. These videos are curated from full chole-
cystectomy procedures on Youtube and were labeled using the same phases as
EndoVis. All videos include each phase from Preparing Calots Triangle through
Retrieval, but may not include insert tools or finish. This dataset contains 25
procedures which were performed at 19 hospitals in 9 countries. Some videos are
as short as 4 minutes and jump in time between each of the major phases, while
others last up to 27 minutes and show the whole surgery. The average video
length is 11.4 minutes. We sifted through dozens of videos and selected ones in
which none of the core phases are skipped and the edits did not substantially
detract from the video. Some videos are intended for surgical training and have
extraneous segments such as powerpoint slides at the beginning. These portions
are label null and are removed after prediction but before computing accuracies.

Data was manually labeled using the phase definitions from EndoVis by
one engineer experienced in the surgical domain. The labels were verified by a
second engineer who was very familiar with the EndoVis dataset. We perform
5-fold cross-validation such that we train on 20 instances and test on 5.

Metrics
We evaluate using accuracy and segmental boundary distance. Accuracy mea-
sures the percentage of a video that is correctly labeled. Twinanda et al. [15]
proposed boundary distance which measures the percentage of the temporal
boundaries that are correctly predicted within a certain interval. The motiva-
tion is that temporal phase boundaries are often ambiguous and thus the precise
start or end time is not of critical importance. Practically, for each segment,



Spatial CNN ST-CNN

Data source(s) LM SMM DTW LM SMM DTW [3] [15]

Video 57.6 78.8 81.2 69.0 77.8 84.6 68.1 79.7*
Tools 58.5 76.5 85.7 56.4 78.3 91.2 78.9 73.0
Video + Tools 73.7 87.3 92.3 81.8 88.5 92.8 88.9 -

EndoVis

Spatial CNN ST-CNN

Data source LM SMM DTW LM SMM DTW

Video 47.9 36.0 63.7 56.3 60.1 62.4
EndoTube

Table 1: Results from (top) EndoVis and (bottom) EndoTube. *[15] achieves 86.0% on
EndoVis when pre-training their CNN on a larger dataset and with tool information.

we compute the distance of each true starting time and the closest predicted
starting time, and determine if their difference is within a specified threshold.
We show results for distance thresholds of τ = {30, 60, 90, 120}.

5 Results and Discussion

Table 1 shows our accuracy results on both datasets using the spatial-only and
spatiotemporal CNNs. Each row was trained using either video, tool information,
or both. Recall, when using video, the auxilliary term Z in the spatial component
is the set of phase labels at each timestep. When the true tools are used with
the video, the tools are concatenated after the temporal CNN component.

We achieve state of the art results when only using tool data, when combining
tool and video data, and when only using video (assuming no pre-training). Our
high tool-only results are consistent with the findings of Padoy et al. [11] on
another Cholecystectomy dataset. Twinanda et al. [15] perform better than our
results when they train on an unpublished surgical dataset, however, when only
training on EndoVis our video-based results are better. Methodologically we see
that the Spatiotemporal CNN performs favorably compared to a spatial CNN
and the hand-crafted features in [3]. Twinanda et al. [15] achieve 56.9% accuracy
using AlexNet, 62.6% using a spatial CNN trained on EndoVis, and 65.9% when
training on both image and tools. For comparison, our ST-CNN, without a high
level temporal model (LM), achieves 69.0%. Furthermore, we see that the DTW-
based model achieves notably higher accuracy than the linear or semi-Markov
models. DTW captures how the spatiotemporal activations change within each
phase which appears to have a large impact on accuracy.

Performance on EndoTube (62.4%) is far lower than EndoVis, but is com-
mensurate with the large increase of variability. We analyzed the results from
individual videos and found, on average, the best sequence in each split achieves
90.7% accuracy and worst sequence achieves 33.8%. We achieve worst perfor-
mance when the video quality is low (e.g. abnormally high contrast) and when



Fig. 4: Example predictions from the EndoTube and EndoVis datasets. The top of each
plot depicts the sequence of true phases and the bottom depicts the predicted labels
using Dynamic Time Warping. Each color corresponds to a unique surgical phase.

the surgical tools look substantially different than normal. Three of the worst se-
quences have atypical clipping phases. One surgeon uses thread instead of clips,
another uses a unique style of clips, and the third does not use any clips. De-
spite poor accuracy, we think it is important to include these videos because
they address real-world concerns with large-scale workflow analysis.

Table 2 shows the percentage of EndoVis phases that are within τ seconds
from the true starting times. We see that most predictions are correct within
a reasonable tolerance. When combining video and tool-use, all boundaries are
correct within 3 minutes. These videos are 41 minutes on average, so if a phase
is correct within 120 seconds, this shift accounts for less than 5% of the video.

Data source(s) ≤ 30 ≤ 60 ≤ 90 ≤ 120 ≤ 150 ≤ 180

Video 66.2 76.1 82.5 88.8 93.6 93.6
Tools 90.4 90.4 92.0 93.6 93.6 95.2
Video+Tools 85.2 90.4 92.0 95.2 98.4 100.0

Table 2: The percentage of predicted label boundaries within the specified distance (in
seconds) to the true boundaries on EndoVis using the DTW model.

Figure 4 shows predictions from each dataset. Qualitatively, we see that many
errors are simply small temporal shifts. On EndoTube, some predictions (e.g.
rows 3 & 5) perform very well whereas others (e.g. rows 1 & 4) perform poorly.

In summary, we make three important observations about surgical work-
flow analysis. First, despite high performance on single-institution datasets like
EndoVis, current models are insufficient for handling the variability on multi-
institution datasets like EndoTube. This is a result of an insufficient quantity
of data and limitations with the model. Perhaps, new data augmentation tech-
niques could improve performance on these videos. Second, explicitly capturing
local temporal information, such as with Spatiotemporal CNN, can improve per-
formance compared to traditional spatial CNNs. Lastly, temporal models like
DTW, which jointly capture how our spatiotemporal activations change across
time both locally and globally, are beneficial.
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