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Abstract I

Purpose Surgical phase recognition using sensor data is challenging due to high
variation in patient anatomy and surgeon-specific operating styles. Segmenting
surgical procedures into constituent phases is of significant utility for resident
training, education, self-review, and context-aware operating room technologies.
Phase annotation is a highly labor-intensive task and would benefit greatly from
automated solutions.

Methods We propose a novel approach using system events – for example, activa-
tion of cautery tools – that are easily captured in most surgical procedures. Our
method involves extracting event-based features over 90 second intervals and as-
signing a phase label to each interval. We explore three classification techniques:
support vector machines, random forests, and temporal convolution neural net-
works. Each of these models independently predicts a label for each time interval.
We also examine segmental inference using an approach based on the semi-Markov
Conditional Random Field, which jointly performs phase segmentation and classi-
fication. Our method is evaluated on a dataset of 24 robot-assisted hysterectomy
procedures.

Results Our framework is able to detect surgical phases with an accuracy of 74%
using event-based features over a set of five di↵erent phases - ligation, dissec-
tion, colpotomy, cu↵ closure and background. Precision and recall values for the
cu↵ closure (Precision: 83%, Recall: 98%) and dissection (Precision: 75%, Recall:
88%) classes were higher than other classes. The normalized Levenshtein distance
between predicted and groundtruth phase sequence was 25%.
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Conclusions Our findings demonstrate that system events features are useful for
automatically detecting surgical phase. Events contain phase information that
cannot be obtained from motion data, and that would require advanced computer
vision algorithms to extract from a video. Many of these events are not specific
to robotic surgery and can easily be recorded in non-robotic surgical modalities.
In future work, we plan to combine information from system events, tool motion,
and videos to automate phase detection in surgical procedures.

Keywords surgical phase detection · system events · sensor data · surgical
workflow analysis · robot assisted surgery · surgical task flow · surgical process
modeling

1 Introduction

Birkmeyer et al. [1] have shown that post-operative outcomes are associated with
technical skills of the operating surgeon, and that peer review may be useful to
assess surgical skills. Such peer review is impractical at scale due to time and re-
source constraints. However, this may become tractable if new tools are developed
to e�ciently index all surgical phases within each procedure.

We posit computational models that automatically analyze surgical procedures
and extract critical phases will benefit both manual and automated video review.
Computational models could also help focus surgical training by detecting and
annotating common errors that occur in each step of a surgery. In addition phase
cataloging may be important for self-review and context-aware operating room
technologies. For example, trainees could be shown a set of relevant surgical phase
videos from the catalog based on a structured query. Surgeons could be provided
statistics on the phases from their previous operating room performances along
with patient outcomes. Useful information related to the current phase of the
surgery could be displayed to the operating room members to enhance workflow
e�ciency.

In this paper we describe work towards automated surgical phase detection in
e↵orts to make these tools a possibility. The method we present relies on readily
available event data such as a binary signal indicating if an energy instrument is
active. Although our data was acquired from a da Vinci surgical robot, we show
that we achieve similar performance using only events that are easily acquired
from most surgical platforms for laparoscopic, endoscopic and open surgeries. The
event-based signals are simpler than video or kinematic data, but, as we show
later, can be highly discriminative of surgical phase.

Few papers have focused on using event-based data for phase recognition. The
structured review presented in [)Lalys and Jannin] shows that there has been a
significant e↵ort since 2002 to develop methods for surgical process modeling,
but only a small fraction of this work has addressed surgical phase segmentation.
Methods using techniques like dynamic time warping [3, 4], canonical correlation
analysis [5], hidden Markov models [6], random forests [7], support vector ma-
chines and conditional random fields [8] have been used on sensor data recorded
during laparoscopic cholecystectomy procedures in order to perform surgical phase
modeling. However, the sensor data used in this work – carbon dioxide pressure,
weight of the irrigation and suction bag, inclination of the surgical table – requires
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additional, and sometimes sophisticated, instrumentation of the operating room
prior to the surgery. The method presented by Neumuth et al. in [9] for surgi-
cal phase detection by jointly representing each low-level action using the action
class, instrument, and anatomy has been recently applied by Forestier et al. [10]
to detect phases of surgery using manually labeled low-level activity information.
Similarly, Katic et al. [11] proposed a rule-based surgical workflow analysis using
manual low-level activity labels for phase detection. The low-level activity data
that these approaches rely upon requires explicit manual labeling thereby limiting
their scalability.

Previous approaches using tool motion data, video data and combination of
both have been developed to perform surgical process modeling. However, most of
this work has operated at a di↵erent level of abstraction than phases. Twinanda
et al. [12] performed whole procedure classification using endoscopic video data.
Other work has focused on detection of low-level activities at the maneuver/sub-
task and gesture/surgeme level using machine learning approaches like hidden
Markov models [13, 14, )Varadarajan], linear dynamical systems [16, 17], condi-
tional random fields [18, 19], and many more. However, to the best of our knowl-
edge, none of these methods have been successfully applied at the surgical phase
granularity using live surgery data.

In the remainder of this paper we present a framework for surgical phase de-
tection using features obtained from system events collected from the da Vinci
Surgical system (dVSS; Intuitive Surgical, Inc., Sunnyvale, CA), and we demon-
strate its e↵ectiveness at performing surgical phase recognition in robot-assisted
hysterectomy.

2 Methods

Our phase detection framework consists of: aggregating system events over short
time intervals (Section 2.1), computing the surgical phase probability for each
interval (Section 2.2), and jointly segmenting and classifying all surgical phases
(Section 2.3).

2.1 Feature Extraction

We define a set of features, highlighted in Table 1, that summarize tool and event
information within each 90 second interval. These features are motivated by the
notion that many surgical phases must be completed using a specific set of tools.
For example, a Cu↵ Closure should ideally, be performed using a large needle
driver.

We categorize tools into three types: monopolar energy, bipolar energy, and
normal. The first two refer to cautery tools and the last refers to non-energized
tools such as a needle driver. Note while some tools are intended for cautery
actions, there are times when a surgeon will use them for other tasks like grasping.

For cautery tasks, the surgeon uses one form of energy over the other based on
the step of the procedure and the surrounding anatomy. For example, a surgeon
applies “bipolar” energy to coagulate a structure that is small enough to be grasped
between its two grippers. This tool isolates most of the electrosurgical current
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Table 1: System events-based features and their descriptions

Name Description

Fraction of segment length for which

MonopolarCutTime monopolar cut energy was active
MonopolarCoagTime monopolar coagulation energy was active
BipolarTime bipolar energy was active
TotalTime any of the energy types was active
CameraTime camera was moved
ClutchTime clutch was pressed
HeadInTime surgeon was looking into the console

Number of times

MonopolarCutCount monopolar cut energy was activated
MonopolarCoagCount monopolar coagulation energy was activated
BipolarCount monopolar cut energy was activated
TotalCount any of the energy types was activated
CameraCount camera was moved
ClutchCount clutch was pressed

Binary flag indicating

IsMonopolarTool a monopolar instrument was in use
IsBipolarTool a bipolar instrument was in use
IsNormalTool a non-energy instrument was in use

passed to the grasped tissue or blood vessel. To contrast, a monopolar tool is used
when dissecting a larger area where there are no significant anatomic structures
or vasculature.

We use additional events recorded by the da Vinci including tool identity, tool
changes, movement of the endoscope, repositioning (“clutching”) the manipulators
in the surgical console, and a head-in indicator indentifying if a surgeon is working
at the console. For evaluation we compute results using events common among
most surgical systems as well as ones also available for the da Vinci.

There are three types of features corresponding to the duration of an event
during each 90 second interval, how many times it was activated, and whether or
not it was in use within that period (as listed in Table 1). We compute a feature
vector ft for each time interval from 1 to T composed of each item listed in Table 1.
When using all da Vinci events each vector is of length 16.

2.2 Phase Scoring

A score is computed for each interval which corresponds to the likelihood that the
interval belongs to each class. Let st 2 RC be a vector at time t where C be the
number of surgical phase classes. We compare three score models. The first is a
linear model applied to features at each time step, the second assumes a non-linear
model applied to each time step, and the third assumes a non-linear model applied
to sequences of time steps.

Linear Frame-wise Model: The first model assumes there is a linear vector
wc 2 R16 that discriminates phase c from the rest of the data. Let the score
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sct = wT
c ft. If phase label yt = c then the correct score, syt

t should be higher than
the score for any other class such that syt

t > sct for all c where c 6= yt. We learn
weights w with a one-versus-all Support Vector Machine (SVM).

Non-linear Frame-wise Model: Each phase may be best classified using a
non-linear mapping of the given features in each interval. We follow the work of
Stauder et al. [7] who model surgical phase using a Random Forest classifier. A
Random Forest is an ensemble learning method that randomly learns which fea-
tures are most indicative of each class. At each node in the tree a subset of the
features from the training data are selected and tested for their Gini’s index as
described in [)Breiman]. In our data we observe di↵erent subsets of features are im-
portant in characterizing di↵erent active surgical phase, thus the Random Forest
is well suited to our problem. The score for the cth class is given by the posterior
probability sct = P (c|ft) as computed by this model.

Non-linear Temporal Model: The previous two models assume the label at
each timestep is only a function of the data at the current timestep. However, in
many phases the features may change substantially between the start and the end
of a phase. For example, a surgeon may use a monopolar tool at the start of a
dissection and a bipolar tool at the end.

We apply the temporal Convolutional Neural Network (tCNN) of [21] to cap-
ture long-range dependencies across intervals. A set of temporal filters WI 2 Rd⇥F

model the features across a sequence of d intervals where F is the number of fea-
tures in each interval. Let there be a total of I temporal filters. Each filter models
how features change over the course of a phase. The data for each class can be
modeled as a function of these weights where variable ↵c

i weighs how important
each filter Wi is for class c. The score is computed as sct =

PI
i=1 ↵

c
iWi ⇤ ft:t+d

where ft:t+d denotes the set of features from times t to t + d. Symbol ⇤ refers to
a temporal convolution where the features for each event are convolved over time
with the filter.

2.3 Joint Phase Segmentation and Classification

In frame-wise prediction the class for each time step is yt = argmaxy s
y
t where yt

is the best scoring phase. While frame-wise accuracy is reasonable, some actions
get oversegmented due to high variance in the data. We use a segmental inference
method based on the Semi-Markov Conditional Random Fields to prevent this
issue [)Sarawagi and Cohen].

Let tuple pj = (yj , tj , dj) be the jth action segment where yj is the action label,
tj is the start interval, and dj is the segment duration. There is a sequence of M
segments P = {p1, p2, . . . , pM} for 0 < M  T such that the start of segment j
coincides with the end of the previous segment tj = tj�1+dj�1 and the durations
add up to the total number of intervals

PM
i=1 di = T .

Given scores S =
�
s1, s2, . . . , sn

�
we find the segments P that maximize the

cost E(S, P ) of the whole sequence:

E(S, P ) =
mX

j=1

g(S, yj , tj , dj) (1)
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The segment function g(·) is defined as a sum of the scores within that segment
with the constraint that segment j and segment j + 1 do not belong to the same
phase:

g(S, yj , tj , dj) =

(Ptj+dj�1
t=tj s

yj

t , if yj 6= yj�1

�1, otherwise
(2)

This model can be viewed in the probabilistic setting as a Conditional Random
Field using Pr(P |S) / exp(�E(S, P )).

We solve the following discrete constrained optimization problem to find all
phases, their start times, and durations:

P = argmax
P={p1,...,pm}

E(S, P ) (3)

s.t.
Pm

i=1 di = T and 0 < m  T

In the naive case this problem has computational complexity O(T 2C2). We use
the method proposed in [21] that is of the order O(KTC2) where K is an upper
bound on the number of segments. K is typically much smaller than T .

3 Experiments

3.1 Hysterectomy Dataset

We collected data from a da Vinci surgical robot for robot-assisted hysterec-
tomy (RAH) procedures during an ongoing IRB (Institutional Review Board)
approved study [23]. We interfaced with the robot using the da Vinci research
API [)DiMaio and Hasser] to collect time synchronized 1) endoscopic video, 2)
tool motion data, and 3) system (console) events. The dataset consists of 24 full
RAH surgeries. This excludes those recordings that had missing video or system
event data.

Hysterectomies are highly variable in duration and phase flow. This is unlike
procedures like cholecystectomies which have been studied in many previous phase
detection papers. Our dataset contains surgeries that range from 47 minutes to
3 hours and 47 minutes in length and contain between 8 and 18 phase instances.
Six faculty surgeons performed the procedures with the assistance of more than
20 surgical residents. At least two surgeons participated in each procedure.

3.2 Phase Labels

A set of surgical phases were defined after consultating with our collaborating
gynecologist. These phases are listed in Table 2. Our event-based features cannot
distinguish between anatomical structures so similar phases were grouped into
a higher-level labels. In addition to the 4 surgical phase labels from Table 2,
remaining portions of the surgery were labeled a background class named No

Label. In total, our system classifies 5 phase labels: ligation, dissection, colpotomy,
cu↵ closure and no label.
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Table 2: Phases during a robot-assisted hysterectomy procedure along with their
duration distribution across the 24 surgeries (VCC: vaginal cu↵ closure)

Original Phase Label Derived Label Prior

Ligation of left/right IP ligament
Ligation 0.066Ligation of left/right round ligament

Ligation of left/right utero-ovarian ligament

Isolation of uterus
Dissection 0.460

Dissection of auxiliary structures

Colpotomy (cutting the cervix) Colpotomy 0.061

VCC using Interrupted Suturing

Cu↵ Closure 0.161
VCC using V-Lock Suture
VCC using Running Suturing
VCC using Figure-Of-Eight Suturing

Background No Label 0.251

A single individual (without a medical background) labeled each procedure
by manually annotating the start, stop, and phase type of each phase instance.
Another individual independently verified these phase labels.

3.3 Feature Extraction

In total, the 24 RAH procedure videos contain approximately 50 hours of data.
Features are aggregated in overlapping intervals of 90 seconds resulting in 5781
intervals across all surgeries. In the discussion we show sensitivity analysis on
interval lengths from 60 to 180 seconds. Note it is possible for a single interval to
contain more than one distinct phase label. As such, the label that is true for the
longest is chosen as that interval’s groundtruth phase label.

In principle we could compute a feature for every timestep, however, the data
tends to stay constant over long periods of time. As such, we only compute features
every 30 seconds. This makes training our models much more reasonable. We
explore di↵erent rates in the discussion.

3.4 Modeling Tools Implementation

All data was normalized using zero-mean and unit-variance scaling using statistics
from the training data. Cross validation was performed to find the hyperparame-
ters in each model. The Random Forest uses 100 trees using out-of-bag estimation
error over the range of N = [10, 500]. The minimum number of leaf nodes in each
tree is set to 5. The temporal CNN was implemented using Keras 1 , an e�cient
library for developing deep learning models. We set the filter duration to be 20 in-
tervals based on cross-validation. For segmental inference, we set the upper bound
on the number of phases in a video to be 15.

1 Keras: Deep Learning library: http://keras.io

http://keras.io
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3.5 Metrics

Results are evaluated using overall accuracy, per-class precision/recall and a seg-
mental Levenshtein distance. Accuracy measures the percent of all frames that are
correctly labeled. Precision and recall are computed per-class using the number of
true positives (TP ), false positives (FP ), true negatives (TN), and false negatives
(FN):

Accuracy =
TP + TN

TP + FP + FN + TN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

The Levenshtein distance metric (LD) [)Wikipedia] emphasizes the di↵erence
in errors like false-positives between framewise and segmental inference. It com-
putes the di↵erence between two string sequences by computing the minimum
number of edits (insertions, deletions and substitutions) that need to be performed
to change one sequence into the other. Each set of predictions is split into it’s con-
stituent segments. For example, “AAABBCCCC” becomes “ABC.” The number
of segments in each prediction and ground truth labeling may vary, thus LD is
normalized by the maximum number of segments in each prediction and ground
truth labeling. Note smaller values for LD indicate better performance.

3.6 Skewed Phase Distribution

Some surgical phases are much longer in duration than others. Table 2 shows the
ground truth phase distribution is highly skewed towards Dissection and No Label

class. To account for this, we sub-sampled the training data for the SVM and
RF classifiers to create a balanced training dataset. We created 100 iterations for
training set in each of the validation folds. The final score st for a test sample
was the average of the score over the 100 iterations. However, as the test set was
expected to be skewed, the training data class distribution was set as the class
weight for the SVM and RF models.

The most important phase labels from a surgical standpoint – Ligation and
Colpotomy – are sometimes very short in duration. Using a step size of 60 seconds,
most instances of these phases are contained by a single timestep. in the dicussion
we show performance using di↵erent sampling periods (10, 30, 45, 60 seconds).

3.7 Sensitivity Analyses: Interval Length and Feature Set

In addition to the validation of the three models using the metrics listed above,
we performed two sets of experiments to analyze the e↵ect on phase prediction
performance of our framework:
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Table 3: Phase prediction accuracy for various step sizes. (Seg) refers to segmental
inference based phase predictions.

Method
Time Steps (seconds)

10 30 45 60

SVM 66.8 67.1 66.0 64.4
RF 71.5 71.7 71.9 70.4
tCNN 73.4 74.3 71.7 69.1

SVM(Seg) 70.2 70.4 70.1 67.1
RF(Seg) 74.4 74.3 74.4 72.0
tCNN(Seg) 74.5 76.0 73.6 70.3

Interval Length This is the time period over which the signals are aggregated.
For an interval length of 120 seconds, if the bipolar energy tool was activated 10
times during the period (t, t+120) then its count feature at time t would be 10. We
evaluated performance for interval lengths ranging from 60 seconds to 180 seconds
in increments of 30 seconds.

Feature Set Although our data was recorded using a da Vinci system, a subset
of the features, like those derived from energy activations and tool identification,
can be captured easily and at a low cost using button sensors and RFID tags.
These signals are generic across laparoscopic, endoscopic and open surgical proce-
dures. We evaluated our framework’s prediction performance using a 9-dimensional
subset vector (EtECtTi) containing 3 time-based energy features, 3 count-based
energy features, and 3 tool information flags.

4 Results

Performance is computed using leave-one-surgery-out cross validation over all 24
trials. We address several questions: (1) what is the overall accuracy and preci-
sion/recall for each surgical phase? (2) what is the impact of segmental inference?
(3) how do the interval length and time between intervals impact accuracy? and
(4) do signals specific to the da Vinci enhance performance versus signals available
and generic to most other forms of surgery?

Overall framewise prediction accuracy is displayed in Table 3. Results using
framewise inference are listed on top and using segmental inference are on bottom.
In general, RF and tCNN perform better than SVM, however, these di↵erences are
only 4–5%. Accuracy of the segmental predictions is higher than the corresponding
frame-wise predictions by about 3%.

Table 3 also shows that there is a minor increase in accuracy as the step size
decreases from 60 to 10 seconds. The results stabilize around 30 seconds. This may
be because phases with short duration, such as Ligation, yield a small number of
samples. The improvement is largest for the temporal CNN which models how the
features change over time.

Tables 4 and 5 show per-class precision and recall. Precision is higher for Dissec-

tion and Cu↵ Closure, moderate for Colpotomy and No Label and low for Ligation.
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Table 4: Per-phase precision with a 30 second step size. (Seg) refers to segmental
inference based phase predictions.

Phase SVM RF tCNN SVM(Seg) RF(Seg) tCNN(Seg)

Ligation 24.1 36.0 37.7 14.3* 44.6 40.9
Dissection 72.7 73.7 78.2 75.0 72.9* 78.3

Colpotomy 38.9 60.1 57.7 41.3 63.8 69.1

Cu↵ Closure 80.8 83.0 85.3 80.6* 83.1 85.4

No Label 55.8 62.6 68.8 61.6 74.1 70.6

* - indicates segmental inference lowered the precision value.

Table 5: Per-phase recall with a 30 second step size. (Seg) refers to segmental
inference based phase predictions.

Phase SVM RF tCNN SVM(Seg) RF(Seg) tCNN(Seg)

Ligation 14.9 15.9 27.5 3.6 9.5 24.4

Dissection 78.2 84.0 82.2 82.8 91.3 85.6
Colpotomy 39.5 37.3 55.9 44.4 32.7 60.2

Cu↵ Closure 97.0 98.0 95.3 98.8 98.8 95.0
No Label 44.6 52.4 61.4 50.2 50.7 61.4

Table 6: Overall Levenshtein Distance in phase prediction for the di↵erent time
steps. (Seg) refers to segmental inference based phase predictions. Smaller values
for LD indicate better performance.

Method
Time Steps (seconds)

10 30 45 60

SVM 32.1 32.0 33.0 33.8

RF 27.2 27.0 26.6 27.7

tCNN 26.2 25.0 27.1 29.0

SVM(Seg) 29.9 30.1 29.9 31.9

RF(Seg) 24.8 25.0 25.3 27.0

tCNN(Seg) 25.2 23.9 26.2 28.4

Segmental inference tends to improve precision in all except three cases (marked
with a *). Cu↵ Closure phase has near perfect recall and Dissection has recall of
85%. Recall for Ligation was poor in most cases.

Table 6 compares performance using the LD metric. The results are similar
to observations in the overall accuracy. RF and tCNN perform similarly and are
both better than SVM. The segmental inference performance across the three
approaches improves the LD metric as well. As the step size decreases the LD
performance tends to decrease.

Table 7 shows e↵ect on accuracy in phase prediction as part of the first sensi-
tivity analysis (Section 3.7) using features computed with interval lengths varying
from 60 to 180 seconds. The performance is similar among all values, however,
results at 60 seconds are marginally worse. This matches our intuition to choose
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Table 7: Phase prediction accuracy using di↵erent interval lengths for aggregating
the features. Time step size was 30 seconds using the 16-dimensional feature set.

Method Interval Length (seconds)

60 90 120 150 180

SVM(Seg) 69.8 70.4 70.2 70.7 70.6

RF(Seg) 72.4 74.3 74.5 74.1 74.6

tCNN(Seg) 76.0 76.0 77.0 76.3 76.1

Table 8: Phase prediction accuracy using signals specific to the da Vinci (all) versus
signals generic to many surgical systems (EtECtTi). The latter is a 9-dimensional
vector containing the 3 time-based energy features, 3 count-based energy features,
and 3 tool information flags.

Feature Set SVM(Seg) RF(Seg) tCNN(Seg)

all 70.4 74.3 76.0

EtECtTi 61.6 71.0 72.5

90 second intervals for the main results based on the typical phase lengths for
hysterectomy procedures.

Table 8 compares results using all signals recorded by the da Vinci versus the
subset EtECtTi of signals common to most surgical systems (Section 3.7). Our
results show the performance using these generic features is only a small amount
worse than using all features.

5 Discussion and Future Work

Our dataset is highly realistic and contains natural variations in procedure flow
pertaining to patient anatomy, type of hysterectomy (total, radical, subtotal) and
surgeon style. Despite these challenges, the performance of our framework was
comparable to the overall accuracy of other reported results [7, 8]. Precision and
recall across phases are similar to those reported in [7]. That work also finds
precision and recall of the dominant class tends to be much higher than other
classes.

Despite investigating several models with various distinct assumptions we found
all approaches achieved relatively similar performance. The first (SVM) assumed a
simple linear model, the second (Random Forest) learned the most important sub-
sets of features for each phase, and the third (temporal CNN) nonlinearly modeled
the temporal evolution of features. Based on these results and our experience work-
ing with this data we surmise the biggest issue is not with the activity recognition
models but with the way the problem is posed. The extreme temporal variability
has a large negative impact on prediction. Some of the phases are many times
longer than others. This results in many short phases being merged into neighbor-
ing larger ones. This was an issue with the tCNN because temporal filters tended
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to smooth out feature responses across short phases. It was especially apparent
when using segmental inference.

While the presented framework and validation were based on events data cap-
tured from a robotic platform, we performed experiments leaving out some of the
robot-specific features like camera motion and clutching. This analysis showed that
the performance of the di↵erent models in predicting the phase label did not de-
crease by a large amount using the smaller set of features generic to other forms of
surgery (Table 8). Thus, our method can be applied and tested with other surgical
systems.

Information for surgical phase detection is distributed across di↵erent forms of
data - video, tool motion and system events. Future work should look at combining
multiple modalities to capture complementary information. Each data type has
its own advantages and disadvantages. While video contains the most context
it is challenging to detect the action being performed, anatomy being operated
upon, and the instruments in use. Tool motion data captures a surgeon’s direct
movements but lacks contextual information like what anatomy the surgeon is
operating on. Events signals like button presses and releases are the simplest and
cheapest to acquire but do not capture anatomy or nuance in a surgeon’s motions.

There are many questions that require further investigation. For example, can
our proposed approach apply to other surgical procedure data? How does workflow
vary between di↵erent surgeons? Do certain workflows correlate with improved
outcomes? How do patient anatomy or prior conditions e↵ect the workflow? While
this work highlights some of the tools necessary for addressing these questions, our
analysis is limited by the size of our dataset. To answer these questions we must
scale up the dataset so there are a su�cient number of trials for proper analysis.
Future research must consider this when generating new datasets.

6 Conclusion

Surgical phase detection, at scale, has many useful applications for surgical edu-
cation, training, and assessment. Analysis of surgical phases and their impact on
patient outcomes can provide important insights about critical steps in a surgery.
We have presented a scalable solution for phase detection using system events
captured during live surgical procedures. Our findings demonstrate that system
events contain surgical phase information, and thus they may be combined with
tool motion and/or video data to automate surgical phase recognition with a better
performance.
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