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Abstract— Fine-grained action recognition is important for
many applications of human-robot interaction, automated skill
assessment, and surveillance. The goal is to segment and
classify all actions occurring in a time series sequence. While
recent recognition methods have shown strong performance in
robotics applications, they often require hand-crafted features,
use large amounts of domain knowledge, or employ overly
simplistic representations of how objects change throughout
an action. In this paper we present the Latent Convolutional
Skip Chain Conditional Random Field (LC-SC-CRF). This time
series model learns a set of interpretable and composable action
primitives from sensor data. We apply our model to cooking
tasks using accelerometer data from the University of Dundee
50 Salads dataset and to robotic surgery training tasks using
robot kinematic data from the JHU-ISI Gesture and Skill
Assessment Working Set (JIGSAWS). Our performance on 50
Salads and JIGSAWS are 18.0% and 5.3% higher than the
state of the art, respectively. This model performs well without
requiring hand-crafted features or intricate domain knowledge.
The code and features have been made public.

I. INTRODUCTION

Fine-grained action recognition is important for many
applications of human-robot interaction, automated skill
assessment, and surveillance. These recognition systems
have the potential to change the way people interact with
the world and with each other by automatically recog-
nizing and evaluating human actions. The focus of this
work is to predict a sequence of actions given sensor
data such as robot kinematics or accelerometer values. For
example, in a cooking task an example action sequence
for make sandwich might be put bread on plate,
add mustard to bread, place meat on bread, and
place bread on sandwich.

There are many subtleties to fine-grained action recog-
nition that make it a difficult problem. Actions are often
performed in different styles, over variable amounts of time,
and in unique sequential orderings. In the cooking example
each user may select a different set of ingredients to add
on their sandwich. Some action sequences require a specific
order while others have several common variations.

This work has three major contributions. First, we intro-
duce a notion of an action primitive composed of convolu-
tional filters. These capture how features like robot position
and object state transition throughout an action. For example
a primitive may capture the act of picking up a spoon
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Fig. 1. Sample data from University of Dundee 50 Salads and the JHU-ISI
Gesture and Skill Assessment Working Set (JIGSAWS). The middle shows
a corresponding action sequence where each color denotes an action label.
The bottom depicts sensor signals where each row is an accelerometer or
robot pose value over time.

followed by a salad bowl. Our model is motivated by recent
work in deep learning where hierarchies of convolutional
filters are learned for tasks like object classification. While
deep networks are notorious for being black boxes, we show
that by modeling each action as a sequence of class-specific
temporal filters we can visualize our model in a way that is
much more interpretable.

Second, we introduce the Latent Convolutional Skip-
Chain Conditional Random Field (LC-SC-CRF) for joint
temporal segmentation and action classification. This is a
generalization of the Skip Chain Conditional Random Field
(SC-CRF) of Lea et al. [7] which achieves high performance
on surgical action recognition. The latent convolutional
component models multiple variations of each action. For
example the action peeling may now consist of three
action primitives: pick up peeler, peel cucumber,
and put down peeler. The skip-chain component models
the ordering of sequential actions by learning how frequently
actions transition from one to another.

Lastly, we find that commons metrics for action recogni-
tion, like frame-wise accuracy, are insufficient for evaluating
practical aspects of these systems. It is possible to achieve
high frame-wise accuracy but severely over-segment the
sequence by producing many false positives. We suggest
two complementary metrics: a modified overlap score which
evaluates temporal segmentation and a segmental edit score
which evaluates the classification accuracy of each segment.

We apply our model to applications in cooking and robotic
surgery. We use the University of Dundee 50 Salads dataset



to recognize cooking actions, such as cutting, mixing,
and peeling, performed while making a salad. This dataset
includes RGBD data and a set of accelerometers located on
10 kitchen utensils. For robotic surgery we evaluate on the
JHU-ISI Gesture and Skill Assessment Working Set (JIG-
SAWS) which contains videos and robot kinematic data of
users performing training tasks like suturing, needle passing,
and knot tying. These were collected from a daVinci surgical
robot and are also used for automated skill assessment.

We publicly released our model code, features, and scripts
used for 50 Salads and JIGSAWS.1

II. RELATED WORK

Recently work on fine-grained action recognition has
been applied to the domains of cooking, robotic surgery,
human-robot assembly, household tasks, and sports:

Cooking: Ramirez-Amaro et al. [11] recognize fine-
grained actions in two cooking tasks where the user’s hands
and relevant objects can be detected reliably. Their model
uses semantic reasoning (via a decision tree) with simple
predicates like hand moving and object in hand.
They claim complicated temporal models are unnecessary
when features are highly accurate. While their claim may
be true in specific applications, contrary to our approach,
their method may not work well in domains where objects
cannot be detected reliably. Lei et al. [8] classify a set of
cooking tasks like making a cake using features derived
from object and hand trajectories. While their approach
works well, the solution is limited because they assume
actions have already been segmented temporally. Stein and
McKenna [13] introduce the 50 Salads dataset. They apply
standard frame-wise models like Naive Bayes and Random
Forests with features derived from object location and
usage. While they set a good baseline the performance is
insufficient for practical applications.

Surgical Action Recognition: Models for surgical
training tasks tend to use robot kinematic information such
as gripper pose and velocity [14], [17], [7]. Much of this
work has modeled surgical actions using Hidden Markov
Models [14], [17], [12] and Linear Chain Conditional
Random Fields [15], [7]. These assume each action can
be classified using a linear combination of the features
(e.g. pose) at each individual frame and the action at the
previous time interval. Varadarajan [17] assumes actions
can be recognized using a Switching Linear Dynamic
System (LDS). His solution breaks the signal into 15 frame
partitions and fits an LDS to each. This is similar in spirit to
the our action primitives, however, our convolutional filters
model much longer temporal windows and learn nonlinear
changes within each action. Tao et al. [15] propose a
Markov Semi-Markov model for joint segmentation and
action classification. Their actions are modeled using the

1https://github.com/colincsl/LCTM

mean of features within a segment and do not capture how
they transition throughout an action.

Human Robot Assembly: Vo and Bobick [18] introduce
the Sequential Interval Network for action recognition in
applications of human-robot interaction. They assume a
known task model, defined using a Context Free Grammar,
to predict the start, stop, and type of each action segment.
Their features are based on detected hand positions and
a set of known bin locations at the start and end of each
action and the duration of a segment. Vo and Bobick [18]
apply this model to a toy assembly task and Hawkins et al.
[4] apply it to a human robotic interaction task.

Other Applications: Koppula and Saxena [6] propose
a Conditional Random Field model for activities of
daily living that captures object-object and action-
object relationships. They generate many action segment
hypotheses by sampling and evaluating graph structures
that encode these relationships. Hu et al. [5] apply a latent
Conditional Random Field to the same domain. To contrast
with [6] they evaluate all action segment hypotheses by
posing their model as Semi-Markov. Yang et al. [20], [3]
learn how objects change as a consequence of an action.
For example, in a cutting task the transition from a whole
cucumber to two halves is modeled as a change from
one segment to two. While this work provides interesting
insights into action-object relationships, it is unclear how it
can be generalized to complicated activities.

III. ACTIVITY MODEL

In this section, we propose a Latent Convolutional Skip
Chain CRF (LC-SC-CRF) model of fine-grained activities.
The proposed model generalizes the Skip-Chain CRF [7] by
adding a new latent representation of action primitives and
a new temporal prior. In what follows, we first introduce
the notation needed to define our model, and then discuss
our action primitive representation and temporal priors. After
we discuss parameter estimation using a Latent Structural
Support Vector Machine and inference in a skip-chain model.

A. Notation

Let Xt be a set of features (e.g. positions, velocities) at
time t for t ∈ {1, . . . , T} and Yt be the corresponding action
(e.g. cutting, peeling). We model the conditional distribution
of the sequence of labels Y = {Yt} given the sequence of
features X = {Xt} using a Latent CRF model with Gibbs
distribution P (Y |X) ∝ exp(E(X,Y )), where the energy

E(X,Y ) = max
h

T∑
t=1

φ(X,Y, h, t) + ψ(Y, h, t) + π(Y, h, t)

(1)

gives is the score of assigning labeling Y to sequence X .
Here, h denotes a sequence of latent variables, and φ, ψ,
and π denote the scores for action primitives, pairwise skip-
frame actions, and temporal priors respectively, all of which
are described in more detail in the next subsections.



Fig. 2. Action primitives for the class cutting in the 50 Salads dataset.
Each row corresponds to weights for the X, Y, or Z axis of an accelerometer
over time. Red is high, green is neutral, and blue is low. (left) traditional
weight vector applied to a single frame (middle) our convolutional action
primitives (right) and our latent action primitives.

B. Action Primitives

Our goal is to learn an action representation that describes
how objects and their relationships change over the course
of an action. We describe three models: a common frame-
wise model, an action primitive, and a set of latent action
primitives. These are displayed in Figure 2.

Frame-wise: Time series models like HMMs and CRFs
typically use a frame-wise action representation. This
means that each frame gets a score that is a function of
the data solely at that frame and is independent of the
data at surrounding frames. This score is usually a linear
combination of weight vector w for action y and the data at
time t.

φ(X,Y, t) = w>Yt
Xt. (2)

Action Primitive: We use a single representation for each
action using convolutional filters. These filters model how
features change over the course of a specific action. Each
action y is represented by a single filter wy of size F × d
where F is the fixed number of features and d is the
primitive’s duration. The column of each filter corresponds
to the features at each timestep within an action. Ideally this
length would be the exact duration of each action, however,
because durations vary widely between actions we choose it
to be roughly the average length of all actions. The score
of our classifier is given by the following where ? is the
convolution operator:

φ(X,Y, t) = wYt ? Xt:t+d. (3)

This results in a scalar score for time t. Note for later that
this convolution can be rewritten as a dot product of the
vectorized filter w and data Xt:t+d.

Latent Action Primitive: In practice each action instance
can last a different amount of time. For example, in a cutting
action, one person may pause between picking up a knife
and cutting a vegetable. In addition, users may perform
actions in different styles or orderings. Thus, it may be
advantageous to learn a separate model for different parts of
an action such as the start, middle, and end. We use latent

Fig. 3. Our Latent Convolutional Skip Chain CRF. We depict an example
action primitive overlaid from t to t + d. Note for clarity we only depict
nodes for intervals 0, d, and 2d. Additional chains are used to cover all
frames.

variables to learn a set of subactions for each action class.
Note that these subactions are learned in an unsupervised
manner based on the higher-level action labels. They are
initialized by splitting actions into different partitions but
may take on other latent meanings.

Let ht be the latent state at time t. We define a new set of
filters wh

y for h = 1 . . . H and each class y. We assume that
each action has the same number of subactions. The score at
each timestep will correspond to the best scoring subaction
at that time. The score for any hidden state is:

φ(X,Y, h, t) = wh
Yt
? Xt:t+d. (4)

Our energy function will maximize over the best scoring
filters ht. In our applications we find the optimal number of
hidden states H is fewer than 5 per action class.

In Section IV we compare the frame-wise, action primi-
tive, and latent action primitive models. These are referred
to as SC-CRF, LC-SC-CRF (H=1), and LC-SC-CRF (H>1)
respectively.

C. Temporal Model

Skip-frame Model: The pairwise skip-frame term is a
generalization of the Markov class transition model com-
monly used in HMMs. While Markov models are very
effective for capturing class transitions when each action is
very short (i.e. a few frames), they are not well suited for
long-range transitions like ours where each action is on the
order of 100 frames long.

This skip frame term models class transitions from time
t−d to t. The probability of an action changing from class a
to class b between these timesteps is much higher than from
t−1 to t. Parameter d is called the skip length and is chosen
via cross validation. Empirically this has a substantial effect
on accuracy and better models higher-order class transitions.

We model the skip frame term using a pairwise transition
matrix indexed by the current and previous labels Yt and
Yt−d. This score is

ψ(Y, h, t) = wYt−d,Yt (5)

In the latent action primitive model these pairwise transitions
are a function of the latent variables h′ and h at each time
step.



Temporal Priors: In fine-grained applications there
may be many different sequence orderings that all constitute
the same activity. For example, when making a sandwich
you can add meat first then add cheese or vice versa.
However, there are often only one or two ways to start and
end a sequence. For example, you must start the sandwich
making activity by picking up the bread.

We model these boundary actions using a starting prior πs
for what action class occurs at the beginning of a sequence
and an end prior πe for the action at the end of a sequence.
These are modeled as:

πs(Y, h, t) = wYt1[0 < t ≤ d], and, (6)
πe(Y, h, t) = wYt1[T − d < t ≤ T ]. (7)

where 1[a] is 1 if a is true and 0 if it is false. We collect
both prior terms into π(y, t) = πs(y, t)+πe(y, t). In practice
we add the priors to frames t = 1 . . . d and t = T − d . . . T .
In the latent model these priors are over the hidden states.

D. Learning

All of the aforementioned terms can be written as a linear
function of w as:

E(X,Y ) = max
h

T∑
t=1

w>Ψ(X,Y, h, t), (8)

where Ψ is the concatenation of all unweighted and vector-
ized energy terms for a given timestep. Using the convolu-
tional action primitives this is:

Ψ(X,Y, h, t) =

T∑
t=1


Xt:t+d

1[y = Yt−d]1[y′ = Yt]
1[0 < t ≤ d]

1[T − d < t ≤ T ]

 . (9)

Recent work has shown that jointly learning parameters
w of a CRF using the Structural Support Vector Machine
(SSVM) [16] often achieves superior accuracy compared
to probabilistic alternatives [19], [9]. We use the Latent
Structural Support Vector Machine [21] for our latent ac-
tion primitive model. The SSVM models an upper bound
on the empirical risk using loss function ∆. We define
∆(Y ∗, Y, h∗, h) to be the Hamming distance where Y ∗ is
the ground truth and Y is an arbitrary labeling:

∆(Y ∗, Y, h∗, h) =

T∑
t=1

1[Y ∗t 6= Yt]. (10)

This loss is correlated with frame-wise accuracy.
We minimize the LSSVM using the Convex Concave Pro-

cedure [21], which alternates between updating the hidden
states ht at each timestep and updating the weights using
gradient descent. We use Stochastic Gradient Descent where
the step size is computed dynamically with Adagrad [1].
Mathematical details of the LSSVM are beyond the scope
of this paper. For a recent overview on these models and
methods see [10]. Note that for each term in our energy we
initialize the latent weights by dividing each action into H

Fig. 4. Our metrics measure two types of errors. First is oversegmentation,
which is when there are multiple predicted action segments contained within
one true segment. The second evaluates the sequential ordering of actions
and allows for small temporal offsets. They offsets are sometimes caused
by inter-reviewer variability and should not negatively impact performance.

pieces (corresponding to the H latent variables per class) and
performing KMeans clustering. When there are two latent
states this encourages one action primitive to fit the start of
an action and a second to fit the end of an action.

E. Inference

We use a modified Viterbi decoding algorithm to compute
the best labeling Y = arg maxY E(X,Y ). During inference,
we compute score Vt,y for each label y at all timesteps t.
V is a table of size T × C where T is the total time and
C is the number of classes. This is a dynamic programming
problem where

Vt,y = max
y′

Vt−d,y + w>Ψ(X, y, y′, t). (11)

We output the best label sequence Y by backtracking through
the score table. Our algorithm amounts to performing Viterbi
decoding on d independent chains and then interlaced them
together. See [7] for more details. Computational complexity
is on the order of O(TC2) operations and O(TC) memory.

While performance using skip chains is far superior than
linear chains, they are prone to over-segmentation. Each pair
of sequential timesteps is independent thus action predictions
may fluctuate spuriously from frame t to t+ 1. We remedy
this by simply applying a median filter to the set of predic-
tions. We find this has a large decrease in the number of
spurious false-positives. We set the median filter to be half
the length of an action primitive.

IV. EVALUATION

In this section we define the evaluation metrics, datasets,
and experimental setups.

A. Metrics

We suggest two evaluation metrics that we find important
for practical applications of action recognition. These sug-
gestions correspond to two types of errors which are depicted
in Figure 4. We also compare our results with prior work
using accuracy, precision, and recall.

The first score measures overlap between ground truth and
predicted segments. This penalizes over-segmentation errors
as depicted in Figure 4 (left). Our score is a function of
the longest contiguous predicted segment for a given ground
truth segment. Let G be the ground truth labeling indexed



by Gi for the ith segment from 1 to N and let Pi be the
predicted labeling. Our score is:

so(G,P ) =
100

N

N∑
i=1

max
j

|Gi ∩ Pj |
|Gi ∪ Pj |

(12)

To be concrete, if G has one segment {[AAAA]} and P
has three segments {[A], [B], [AA]} then the score would
be 50%. Our score lies in [0, 100] where a higher value is
better. It is similar to the Jaccard Index except ours penalizes
over-segmentation errors.

The second score measures how well the model predicts
the ordering of action segments independent of slight tem-
poral shifts. In many domains there is large uncertainty as
to when one action stops and another starts. In applications
like surgical skill evaluation the action ordering may be more
important than precise temporal segmentation. This type of
error is depicted in Figure 4 (right). We evaluate action
ordering using a segmental edit score. For each sequence
we denote the segmental labelings G′ and P ′ such that if
G = {[A], [BBBB], [CC]} then G′ = {ABC}. Our seg-
mental edit score is defined using a normalized edit distance,
se(G

′, P ′), with insertions, deletions, and replacements. The
score is normalized by taking the maximum length of G′ and
P ′. The edit score is computed as (1− se(G,P )) · 100 with
100 being the best and 0 being the worst.

B. 50 Salads

The University of Dundee 50 Salads [13] dataset con-
sists of time-synchronized video, depth, and accelerometer
data. Twenty-five users each make a salad in two different
videos for a total of 50 trials. Each trial is 5-10 min-
utes long. As shown in Figure 1, a static RGBD camera
is mounted facing down pointed at the user preparing a
salad. The motion of each kitchen tool is captured via an
accelerometer embedded in the handle. This data can be
used to indicate which tools are in use at any given time.
In total there are 10 accelerometers which are located on
the plate, pepper dispenser, bowl, oil bottle,
large spoon, dressing glass, knife, peeler,
small spoon and chopping board.

This dataset contains four action label granularities.
At the coarsest level there are three action classes:
cut and mix ingredients, prepare dressing,
and serve salad. There are 17 mid-level actions
such as add vinegar, cut tomato, mix dressing,
peel cucumber, place cheese into bowl, and
serve salad. The third granularity splits each mid-level
action into three sub-actions: start, core, and finish,
for a total of 51 actions. All label sets also include
a background class used when no action is occurring.
Table II shows our results for the low-, mid-, and high-level
granularities.

Following the work of [13] we also evaluate using a
second mid-level granularity that consists of 10 actions
that can reasonably be recognized using the sensor-laden
tools: add dressing, add oil, add pepper, cut,

mix dressing, mix ingredients, peel, place,
serve salad onto plate, and background. This
label set combines variations on cutting and plac-
ing actions. For example cutting cucumber and
cutting tomato belong to the same class.

We evaluate solely using accelerometer data. We lightly
preprocess the data by taking the absolute value of each
signal. We evaluate using 5-fold cross validation where we
train on 20 users (40 videos) and test on 5 users (10 videos).
We use a skip length and filter length of 200 frames. We
also compare our full model to a latent version of the Skip
Chain CRF that does not use action primitives. The 50 Salads
results are shown in Table I (left).

C. JIGSAWS

The JHU-ISI Gesture and Skill Assessment Work-
ing Set (JIGSAWS) [2] has three fine-grained activ-
ities common for robotic surgery training. These ac-
tivities are perfomed on benchtop phantoms and in-
clude suturing, needle passing, and knot tying. See Fig-
ure 1 for an example of suturing. These activities are
each decomposed into about 10 unique action primi-
tives such as insert needle into skin, tye a knot,
transfer needle, and drop needle at finish.
Each task has between 26 and 39 trials performed by up
to 8 users. Videos are around two minutes long and contain
15 to 20 actions per video.

The data includes video and robot kinematics from a da
Vinci surgical robot. We use robot kinematics and vision-
based features as described in [7]. The features are: left and
right tool positions, velocities, and gripper angles as well as
the distance from the tools to the closest object in the scene
from the video.

We evaluate on the suturing task using Leave One User
Out as described in [2]. In each split we train on seven
users and test on the left out user. We use a skip length and
action primitive duration of 100 frames. JIGSAWS results
are shown in Table I (right).

V. RESULTS AND DISCUSSION

Results: On 50 Salads our LC-SC-CRF with four latent
action primitives per class achieves 79% precision and 79%
recall compared to 65% and 67% using the state of the art
approach [13]. This is an improvement of 18.0% and 16.5%
respectively. On JIGSAWS we achieve 83.45% accuracy
compared to 79.25% using the model from the state of the
art [7]. This is an improvement of 5.3%.

The LC-SC-CRF improves upon the SC-CRF in two
important ways. First we introduce the notation of an action
primitive and second we introduce a set of latent variables.
Interestingly, on 50 Salads the action primitives provide the
largest performance increase while on JIGSAWS the latent
variables have the largest effect. This could be due to the
sensors used for each model. JIGSAWS includes position
and velocity data which tends to transition smoothly between



50 Salads JIGSAWS
Models Accuracy Overlap Edit
Linear Chain CRF 71.54 48.40 44.82
SC-CRF (no filter) 76.61 33.05 4.77
SC-CRF (H = 1) 77.47 59.42 51.92
SC-CRF (H = 2) 79.23 62.26 54.25
SC-CRF (H = 3) 78.83 60.12 52.6
SC-CRF (H = 4) 79.23 62.39 52.86
LC-SC-CRF (H = 1) 81.70 64.24 56.89
LC-SC-CRF (H = 2) 81.69 64.67 56.87
LC-SC-CRF (H = 3) 81.39 64.55 58.46
LC-SC-CRF (H = 4) 81.75 64.90 58.08

Models Accuracy Overlap Edit
Linear Chain CRF 74.55 77.58 62.92
SC-CRF (no filter) 78.57 74.47 21.74
SC-CRF (H = 1) 79.25 86.00 71.34
SC-CRF (H = 2) 82.10 87.36 75.18
SC-CRF (H = 3) 81.48 87.55 74.94
SC-CRF (H = 4) 82.55 88.32 72.71
LC-SC-CRF (H = 1) 81.69 88.55 78.91
LC-SC-CRF (H = 2) 83.18 88.78 78.69
LC-SC-CRF (H = 3) 82.37 86.77 77.57
LC-SC-CRF (H = 4) 83.45 88.88 76.86

TABLE I
RESULTS ON 50 SALADS AND JIGSAWS. SC-CRF IS THE SKIP FRAME CRF, LC-SC-CRF IS THE LATENT CONVOLUTIONAL SKIP CHAIN CRF,

H = h DEFINES THE NUMBER OF LATENT VARIABLES, NO FILTER IMPLIES TEMPORAL SMOOTHING IS NOT USED.

Low-level actions Accuracy Overlap Edit
SC-CRF 44.04 27.69 26.0
LC-SC-CRF (H = 1) 44.76 32.17 29.45
LC-SC-CRF (H = 3) 46.28 34.3 31.71
Mid-level actions Accuracy Overlap Edit
SC-CRF 51.47 32.98 20.62
LC-SC-CRF (H = 1) 52.36 34.4 26.33
LC-SC-CRF (H = 3) 55.05 38.42 29.02
High-level actions Accuracy Overlap Edit
SC-CRF 92.85 60.86 57.9
LC-SC-CRF (H = 1) 93.26 59.59 64.27
LC-SC-CRF (H = 3) 94.06 64.64 63.24

TABLE II
EVALUATION ON THE 50 SALADS DATASET USING THE LOW-LEVEL,

MID-LEVEL, OR HIGH-LEVEL ACTIONS DESCRIBED IN THE TEXT.

actions. 50 Salads uses accelerometer data which tends to
change more abruptly between actions.

On 50 Salads adding latent variables has a near negligible
impact on accuracy, overlap, or edit score. The difference
between using one primitive per class versus four per class is
only 0.05%. However, the difference between using a linear
model (SC-CRF with H = 1) and using action primitives
(LC-SC-CRF with H = 1) is 4.23% accuracy. To contrast, on
JIGSAWS latent variables have large effect on performance.
The overlap scores improve by 3.4%. and 1.0% for the linear
(SC-CRF) and action primitive (LC-SC-CRF with H = 1)
models. Accuracy for the SC-CRF with four latent variables
per class is only about 1% worse than for the LC-SC-CRF
with four action primitives.

In a skip chain model, each chain is considered
independent thus it is common to produce spurious false-
positives. This is exemplified by looking at results using
our proposed metrics. On 50 Salads the overlap score using
the SC-CRF (H = 1) increases from 33.05% to 59.42%
and edit score increases from 4.77% to 51.92%. There is a
smaller but also significant improvement on JIGSAWS.

Granularities: Table II shows 50 Salads results for
each action granularity. We are unaware of any prior results
using these granularities. Our model performs very well on
high-level actions. This is not very surprising given there

are only four action classes. Performance on mid-level
actions is lower. In this setup there are 18 classes, such as
cutting cucumber and cutting cheese, some of
which are indistinguishable using the accelerometer data.
Superior performance on this granularity likely requires the
aid of computer vision models to recognize each ingredient.
Performance on low-level actions is worse, however, given
there are 52 action classes we do substantially better than
chance (random accuracy = 1.9%). This granularity includes
very fine-grained actions like start cutting cucumber
and stop cutting cucumber.

Predictions: Figure 5 shows example data and predictions
for each dataset. The top depicts sensor signals throughout a
sequence. Red is high, green is neutral, and blue is low. On
50 Salads gray corresponds to zero acceleration. Consecutive
plots show ground truth and predicted action sequences for
several versions of our model. Each color indicates a unique
action. The model without filtering clearly contains many
incorrect frames. With the LC-SC-CRF segment boundaries
tend to be better aligned with the ground truth and there are
fewer over-segmentation issues than with the SC-CRF.

There are many instances in 50 Salads where the signals
do not appear to be aligned exactly with the accelerometer
values. While it looks like there is a sychronization issue,
this actually shows a limitation in using accelerometer
features for action recognition. In many cases an action
starts when the user starts to move their hand to the
cooking utensil as opposed to starting when the utensil
physically moves. This happens in actions like peeling
and cutting. If we extracted information from the video
it is possible that we would pick these events up earlier.

Learned Action Primitives: On both datasets our
action primitives provide an interpretable way for learning
how signals transition throughout an action. Figure 6
highlights some example action primitives. In 50 Salads
each object has signals for the X, Y, and Z components of
each accelerometer. Typically there is one dominant object
that corresponds to each action class. For example in cutting
the knife is dominant and in peeling the peeler is dominant.



Fig. 5. Examples from 50 Salads and JIGSAWS. The top images show sensor signals over time where red is high, green is neutral, and blue is low. On 50
Salads gray denotes zero-acceleration. Subsequent rows depict the ground truth and predicted labels for several models (H = 1). Each color corresponds
to a different action class.

Fig. 6. Example action primitives learned on 50 Salads and JIGSAWS. Each row in an image depicts the weights for that corresponding sensor over
time. In 50 Salads there are X, Y, and Z values for each object.

Notice that other objects sometimes vary in shades of blue
and green. These may be used for portions of the task (e.g.
the start) or only used in some instances of an action.

In JIGSAW it is common for an action to contain a change
in gripper state. For example when reaching for the needle
the user starts with the gripper open (red) and then closes
it on the needle (green). Other actions are often character-
ized by transitions in tool positions. See the gradients in
the ”Position (right)” features in position needle and
push through tissue.

The clearity of each action primitive appears to be a
function of the sensor type. In 50 Salads there is a clear
delination between when an object is in use versus when
it is not in use which results in sharper gradients when the
user changes utensils. In JIGSAWS the action primtives are

more blurred. This is due to the continuous positions and
velocities in the robot kinematics data.

Other experiments: Throughout this research we assessed
several methods for independently segmenting actions and
then classifying them. In our experience there is no single
temporal segmentation method that works well on all kinds
of time series data. One method may work well on 50
Salads but poorly on JIGSAWS. Furthermore, by performing
these tasks independently it is common to grossly over- or
under- segment the data. It is harder to predict the correct
action sequence in both of these cases.

In many domains sparse regularization has been used
to prevent overfitting. We tested our model using L2 and
L1 norms on the weight vector in the SSVM. While



learned action primitives using L1 regularization were more
sparse the overall accuracy was several percent worse.
We ultimately achieved the best results without using any
regularizer. Further investigation into structured sparsity
could be used to find a small subset of features (e.g. cooking
utensils) that are most important for each action.

Future work: There are many directions that could
provide superior performance and insight into fine-grained
action recognition. Our models are limited by some
assumptions chosen with computationally efficiency in
mind. For example, our action primitives are of a constant
duration. While this make computing scores fast, it neglects
the fact that different users perform actions at different rates.
Future work should investigate methods for incorporating
action primitives of variable duration. Alternatively, a
duration model could capture the variability in the length of
each action.

Incorporating video may be necessary for improved per-
formance on the low- and mid-level label granularities.
Some of these actions, like cutting a tomato and cutting
a cucumber, require knowing the active ingredient, which
cannot be detected using accelerometers. In addition, video-
based methods could be used to enable action recognition in
these domain without costly or cumbersome domain-specific
sensors. However, it is unclear whether or not they would be
able to pick up on the nuances that sensors like acceleromters
are able to capture.

We encourage use of the University of Dundee 50 Salads
dataset for fine-grained action recognition. Many open ques-
tions in action analysis that can be investigated using this
dataset. The quality of labels, quantity of data, and multiple
sensing modalities make it stand out compared to other action
recognition datasets.

VI. CONCLUSION

In this paper we introduced the notion of a convolutional
action primitive that can be used to better segment and pre-
dict a sequence of actions. We learned these efficiently using
a Latent Structural Support Vector Machine and showed they
are visually interpretable. We suggested two metrics that are
important for practical applications of action recognition.
These evaluate over-segmentation errors and the correctness
of the segmental predictions. Our Latent Convolutional Skip
Chain CRF achieves notably higher performance compared
to the models of [7] and [13] on all metrics. In efforts to
promote collaboration and reproducibility our code and data
have been publicly released.
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