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Abstract Over 500,000 Robot-Assisted Minimally-Invasive Surgeries were per-
formed in 2014 [11]. There is a large and growing corpus of kinematic and video
recordings that have potential to facilitate human training and the automation of
subtasks. A key step is to segment these multi-modal trajectories into meaningful
contiguous sections in the presence of significant variations in spatial and tempo-
ral motion, noise, and looping (repetitive attempts). Manual segmentation is prone
to error and impractical for large datasets. We propose Transition State Clustering
(TSC), which segments a set of surgical trajectories by detecting and clustering tran-
sitions between linear dynamic regimes. TSC aggregates transition states from all
demonstrations into clusters using a hierarchical Dirichlet Process Gaussian Mixture
Model in two phases, first over states and then temporally. After a series of merging
and pruning steps, the algorithm adaptively optimizes the number of segments, and
this process gives TSC additional robustness in comparison to other Gaussian Mix-
ture Models (GMMs) algorithms. In a synthetic case study with two linear dynami-
cal regimes, when demonstrations are corrupted with noise and temporal variations,
TSC finds up to a 20% more accurate segmentation than GMM-based alternatives.
On 67 recordings of surgical needle passing and suturing tasks from the JIGSAWS
surgical training dataset [8], supplemented with manually annotated visual features,
TSC finds 83% of needle passing segments and 73% of the suturing segments found
by human experts.

1 Introduction
Kinematic and fixed-camera video recordings from robot-assisted minimally inva-
sive procedures (RMIS) are used in a number of applications such as surgical skill
assessment [8], development of finite state machines for automation [12, 24], learn-
ing from demonstration (LfD) [28], and calibration [21]. However, even in a con-
sistent environment (e.g., on identical tissue phantoms), leveraging the raw data is
challenging. Surgical tasks are often multi-step procedures that have complex inter-
actions with the environment, and as a result, demonstrations can vary widely.

One approach is segmentation of a trajectory by grouping states in locally similar
segments. Existing segmentation work in robotic surgery considers the supervised
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Fig. 1: (1) The TSC fits a switched linear dynamical system model via DP-GMM to identify tran-
sitions, (2) prunes and compacts transition states, (3) clusters these states spatially, and (4) sub-
clusters temporally.

problem setting, either requiring manual segmentation of example trajectories or us-
ing a set of pre-defined primitive motions called “surgemes” [20, 29, 35]. Manual
labelling requires specifying consistent segmentation criteria and applying these cri-
teria to all demonstrations, which can be time-consuming and unreliable if applied
inconsistently. On the other hand, using a dictionary of task-independent surgemes
can lead to missed segments (ones not in the dictionary), and avoiding this can
require defining surgemes at a very fine resolution thereby missing larger task struc-
tures.

Unsupervised segmentation, where the criteria is learned from data without la-
bels or a pre-defined dictionary, has the potential to address these problems. Gaus-
sian Mixture Models (GMM) have been applied to segment demonstrations to fa-
cilitate improved generalization in LfD [5, 19, 15]. However, a challenge in many
LfD frameworks is coping with temporal variation across demonstrations, which is
further amplified in surgery where demonstrations: (1) can vary by minutes, (2) ex-
hibit looping behavior where surgeons repeatedly try an action until success, and (3)
contain inconsistent sequences of actions for the same task. Alignment techniques
such as Dynamic Time Warping are justified when variations are relatively small
[13]. For larger variations, one approach is to model a demonstration as a latent fi-
nite state Markov Chain (Baum-Welch GMM+HMM model) [6]. However, recent
analyses suggest that this model is very sensitive to the amount of training data and
mis-specification of the number of states (segments) [30]. Non-parametric Bayesian
models (e.g., Beta-Process Autoregressive HMM models [25]) and model selection
criterion (e.g., Bayesian Information Criterion) can address the parameter tuning
problem, but slight mis-specifications are inevitable. The surgical setting requires
techniques robust to this problem.

In this paper, we propose the Transition State Clustering (TSC) algorithm (Fig-
ure 1). TSC clusters together similar (spatially and temporally) transition events that
happen in most demonstrations. To do this, it hierarchically applies Dirichlet Pro-
cess Gaussian Mixture Models (DP-GMM) to first identify transition states in each
demonstration (i.e., states that mark changes in linear dynamical system motions)
and then clusters these states across demonstrations after a series of merging and
pruning steps (controlled by user-specified parameters δ ,ρ). This affords some ro-
bustness to spurious states and transitions that happen in a few inconsistent demon-
strations. For example, if in one suturing demonstration a surgeon pulls the needle
through the tissue in a different direction the algorithm will prune this spurious ac-
tion out but still consider those actions in the demonstration that were consistent.

One challenge is to leverage the video data that accompanies kinematic data in
surgical demonstration recordings. In this work, we explore improving segmenta-
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tion through hand-engineered visual features. We describe the video data with two
features: a binary variable identifying object grasp events and a scalar variable indi-
cating surface penetration depth. While in our experiments we construct these fea-
tures via annotation, these features can be automatically calculated such as in [18].
We evaluate results with and without visual features (Section 5.4) deferring the per-
ception problem to future work.

2 Related Work and Background
Learning From Demonstrations: The use of Motion Primitives to model complex
demonstrations as a sequence on smaller segments has been well studied [10, 26].
The motion primitives are manually identified short segments of robot state-space
trajectories and most of these techniques apply segmentation to discretize the action
space, and this facilitates faster convergence on smaller datasets. Manschitz et al.
studied modeling looping behavior and temporal variations using predefined primi-
tives [22].

Niekum et al. [25] proposed an unsupervised extension to the motion primitive
model by learning a set of primitives from demonstrations using the Beta-Process
Autoregressive Hidden Markov Model (BP-AR-HMM). To incorporate environ-
ment information, after segmentation, they represent each segment in a relative co-
ordinate frame w.r.t to every object in the environment–allowing them to generalize
to new scenes using the segments. In this work, we consider a similar Bayesian
non-parametric model (Dirchlet Process) which also consider environment features
relevant to surgery.

Calinon et al. [2] characterizes segments from demonstrations as skills that can
be used to parametrize imitation learning. This work builds on a vast body of litera-
ture of unsupervised skill segmentation including the task-parameterized movement
model [4], and GMMs for segmentation [5]. In this paper, we extend this line work
by applying non-parametric clustering on a GMM based model, and accounting for
specific challenges such as looping and inconsistency in surgical demonstrations.

Handling Temporal Inconsistency: By far the most common model for handling
demonstrations that have varying temporal characteristics is Dynamic Time Warp-
ing (DTW). When there are significant variations due to looping or additional ac-
tions (e.g., demonstrations for suturing vary between 3-5 mins), this model can give
unreliable results [13]. Another model for incorporating temporal structure is to in-
clude time as a feature in the segmentation, that is a state space that is both spatial
and temporal. Like DTW, this model suffices for small temporal variations. To han-
dle larger variations, requires constructing a similarity metric that considers both
space and time–which might be highly non-convex to handle structures like loops.

Another common model for modeling temporal inconsistencies is the Finite State
Markov Chain model with Gaussian Mixture Emissions (GMM+HMM) [1, 3, 14,
32]. These models, also called Baum-Welch models, impose a probabilistic gram-
mar on the segment transitions and can be learned with an EM algorithm. However,
they can be sensitive to hyper-parameters such as the number of segments and the
amount of data [30]. The problem of robustness in GMM+HMM (or closely related
variants) has been addressed using down-weighting transient states [16] and spar-
sification [9]. In TSC, we explore whether it is sufficient to know transition states
without having to fully parametrize a Markov Chain for accurate segmentation.
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Fig. 2: (1) A finite-state Hidden Markov Chain with Gaussian Mixture Emissions (GMM+HMM) ,
and (2) TSC model. TSC uses Dirchilet Process Priors and the concept of transition states to learn
a robust segmentation.

We design TSC to be robust to some types of variations in demonstrations. In Fig-
ure 2, we compare the graphical models of GMM+HMM, and TSC. The TSC model
applies Dirichlet Process priors to automatically set the number of hidden states
(regimes). The goal of the TSC algorithm is to find spatially and temporally similar
transition states across demonstrations. On the other hand, the typical GMM+HMM
Baum-Welch model learns a k× k transition matrix. We empirically find that the
TSC model is robust to noise and temporal variation.
Locally Linear Models: Many unsupervised segmentation models either implic-
itly or explicitly assume that the dynamics are locally linear. It is important to
note that locally linear dynamics does not imply linear motions, as spiraling mo-
tions can be represented as linear systems. In [7], videos are modeled as transitions
on a lower-dimensional linear subspace and segments are defined as changes in
these subspaces. Willsky et al [34] proposed BP-AR-HMM, which was applied by
Niekum et al. in robotics [25]. This model is explicitly linear by fitting a autoregres-
sive model to time-series, where time t +1 is a linear function of times t− k, . . . , t,
to windows of data. The linear function switches according to an HMM with states
parametrized by a Beta-Bernoulli model (i.e., Beta Process).

In fact, even the works that apply Gaussian Mixture Models for segmentation [5,
19, 15], implicitly fit a locally linear dynamical model. Moldovan et al. [23] proves
that a Mixture of Gaussians model is equivalent to Bayesian Linear Regression; i.e.,
when applied to a time window it fits a linear transition between the states.

Local linear models, including the one in this work, can be extended to locally
non-linear models in a straight-forward way through kernelization or increasing
time window. Other non-linear models have been proposed in literature such as
Locally Weighted Regression (e.g., see evaluation in [5]). These variants can be
thought of as soft-time windows using weighted averages. The choice of linear vs.
non-linear is orthogonal to our research contribution of segmentation robust to tem-
poral variation.
Surgical Task Recognition: Surgical robotics has largely studied the problem of
supervised segmentation using either segmented examples or a pre-defined dictio-
nary of motions (similar to motion primitives). For example, given manually seg-
mented videos, Zappella et al. [35] use features from both the videos and kinematic
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data to classify surgical motions. Simiarly, Quellec et al. [27] use manually seg-
mented examples as training for segmentation and recognition of surgical tasks
based on archived cataract surgery videos. The dictionary-based approaches are
done with a domain-specific set of motion primitives for surgery called “surgemes”.
A number of works (e.g., [20, 33, 31, 18]), use the surgemes to bootstrap learning
segmentation.

3 Problem Setup
The TSC model is summarized by the hierarchical graphical model in the previ-
ous section (Figure 2). Here, we formalize each of the levels of the hierarchy and
describe the assumptions in this work.

Dynamical System Model: Let D = {di} be the set of demonstrations where each
di is a trajectory x(t) of fully observed robot states and each state is a vector in Rd .
We model each demonstration as a switched linear dynamical system. There is a
finite set of d× d matrices {A1, ...,Ak}, and an i.i.d zero-mean additive Gaussian
Markovian noise process W (t) which accounts for noise in the dynamical model:

x(t +1) = Aix(t)+W (t) : Ai ∈ {A1, ...,Ak}
Transitions between regimes are instantaneous where each time t is associated with
exactly one dynamical system matrix 1, ...,k

TSC Model (With Visual Sensing) This model can similarly be extended to states
derived from sensing. Suppose at every time t, there is a feature vector z(t). Then
the augmented state of both the robot spatial state and the features denoted is:

x(t) =
(

x(t)
z(t)

)
In our experiments, we worked the da Vinci surgical robot with with two 7-DOF

arms, each with 2 finger grippers. Consider the following feature representation
which we used in our experiments:

1. Gripper grasp. 1 if there is an object between the gripper, 0 if not.
2. Surface Penetration. In surgical tasks, we often have a tissue phantom. This

feature describes whether the robot (or something the robot is holding like a
needle) has penetrated the surface. We use an estimate of the truncated pene-
tration depth to encode this feature. If there is no penetration, the value is 0. If
there is penetration, the value of the feature is the robot’s kinematic position in
the direction orthogonal to the tissue phantom.

Transition States and Times: Transition states are defined as the last states before
a dynamical regime transition in each demonstration. Each demonstration di follows
a switched linear dynamical system model, therefore there is a time series of regimes
A(t) associated with each demonstration.

Therefore, there will be times t at which A(t) 6= A(t + 1). A transition state is
the state x(t) at time t. For a demonstration i, we denote the sequence of transitions
states as Ui = [u1

i , ...,u
J
i ]. J is the number of transition states where J� Ti where Ti

is the time-length of di.

Transition State Clusters: Across all demonstrations, we are interested in aggre-
gating nearby (spatially and temporally) transition states together. A transition state
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cluster is defined as a clustering of the set of transition states across all demonstra-
tions; partitioning these transition states into m non-overlapping similar groups:

C = {C1,C2, ...,Cm}
In principle, any similarity-based clustering model can be applied, and in the next
section, we describe using a hierarchical application of DP-GMM by first applying
a GMM to states, and then sub-clustering by applying a GMM to times. Other prior
segmentation works use time as a feature to the GMM, however, this leads to an
issue of designing a similarity metric that considers both spatial states and time.
Every Ui can be represented as a sequence of integers indicating that transition states
assignment to one of the transition state clusters Ui = [1,2,4,2].

Consistency: We assume, demonstrations are consistent, meaning there exists a
non-empty sequence of transition states U ∗ such that the partial order defined by
the elements in the sequence (i.e., s1 happens before s2 and s3) is satisfied by every
Ui. For example,

U1 = [1,3,4], U2 = [1,1,2,4], U ∗ = [1,4]
A counter example,

U1 = [1,3,4], U2 = [2,5], U ∗ no solution
Intuitively, this condition states that there have to be a consistent ordering of actions
over all demonstrations up to some additional regimes (e.g., spurious actions).

Loops: Loops are common in surgical demonstrations. For example, a surgeon may
attempt to insert a needle 2-3 times. When demonstrations have varying amounts
of retrials it is challenging. In this work, we assume that these loops are modeled
as repeated transitions between transition state clusters, which is justified in our
experimental datasets, for example,

U1 = [1,3,4], U2 = [1,3,1,3,1,3,4], U ∗ = [1,3,4]
Our algorithm will compact these loops together into a single transition.

Minimal Solution: Given a consistent set of demonstrations, that have additional
regimes and loops, the goal of the algorithm is to find a minimal solution, U ∗ that
is loop free and respects the partial order of transitions in all demonstrations.

Problem 1 (Transition State Clustering Problem). Given a set of demonstrations
D , the Transition State Clustering problem is to find a set of transition state clusters
C such that they represent a minimal parametrization of the demonstrations.

4 Transition State Clustering
In this section, we describe the hierarchical clustering process of TSC. This algo-
rithm is a greedy approach to learning the parameters in the graphical model in
Figure 2. We decompose the hierarchical model into stages and fit parameters to the
generative model at each stage. The full algorithm is described in Algorithm 1.

4.1 Background: Bayesian Statistics
One challenge with mixture models is hyper-parameter selection, such as the num-
ber of clusters. Recent results in Bayesian statistics can mitigate some of these prob-
lems. The basic recipe is to define a generative model, and then use Expectation
Maximization to fit the parameters of the model to observed data. The generative
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model that we will use is called a mixture model, which defines a probability distri-
bution that is a composite of multiple distributions.

One flexible class of mixture models are Gaussian Mixture Models (GMM),
which are described generatively as follows. We first sample some c from a cat-
egorical distribution, one that takes on values from (1...K), with probabilities φ ,
where φ is a K dimensional simplex:

c∼ cat(K,φ)

Then, given the event {c = i}, we specify a multivariate Gaussian distribution:
xi ∼ N(µi,Σi)

The insight is that a stochastic process called the Dirichlet Process (DP) defines a
distribution over discrete distributions, and thus instead we can draw samples of
cat(K,φ) to find the most likely choice of K via EM. The result is the following
model:

(K,φ)∼ DP(H,α) c∼ cat(K,φ) X ∼ N(µi,Σi) (1)
After fitting the model, every observed sample of x ∼ X will have a probability of
being generated from a mixture component P(x | c = i). Every observation x will
have a most likely generating component. It is worth noting that each cluster defines
an ellipsoidal region in the feature space of x, because of the Gaussian noise model
N(µi,Σi).

We denote this entire clustering method in the remainder of this work as DP-
GMM. We use the same model at multiple levels of the hierarchical clustering and
we will describe the feature space at each level. We use a MATLAB software pack-
age to solve this problem using a variational EM algorithm [17].

4.2 Transition States Identification
The first step is to identify a set of transition states for each demonstration in D . To
do this, we have to fit a switched dynamic system model to the trajectories. Suppose
there was only one regime, then this would be a linear regression problem:

argmin
A
‖AXt −Xt+1‖

where Xt is a matrix where each column vector is x(t), and Xt+1 is a matrix where
each column vector is the corresponding x(t + 1). Moldovan et al. [23] proves that
fitting a Jointly Gaussian model to n(t) =

(x(t+1)
x(t)

)
is equivalent to Bayesian Linear

Regression.
Therefore, to fit a switched linear dynamical system model, we can fit a Mixture

of Gaussians (GMM) model to n(t) via DP-GMM. Each cluster learned signifies
a different regime, and co-linear states are in the same cluster. To find transition
states, we move along a trajectory from t = 1, ..., t f , and find states at which n(t) is
in a different cluster than n(t +1). These points mark a transition between clusters
(i.e., transition regimes).

4.3 Transition State Pruning
We consider the problem of outlier transitions, ones that appear only in a few
demonstrations. Each of these regimes will have constituent vectors where each
n(t) belongs to a demonstration di. Transition states that mark transitions to or from
regimes whose constituent vectors come from fewer than a fraction ρ demonstra-
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tions are pruned. ρ should be set based on the expected rarity of outliers. In our
experiments, we set the parameter ρ to 80% and show the results with and without
this step.

4.4 Transition State Compaction
Once we have transition states for each demonstration, and have applied pruning, the
next step is to remove transition states that correspond to looping actions, which are
prevalent in surgical demonstrations. We model this behavior as consecutive linear
regimes repeating, i.e., transition from i to j and then a repeated i to j. We apply
this step after pruning to take advantage of the removal of outlier regimes during
the looping process. These repeated transitions can be compacted together to make
a single transition.

The key question is how to differentiate between repetitions that are part of the
demonstration and ones that correspond to looping actions–the sequence might con-
tain repetitions not due to looping. To differentiate this, as a heuristic, we threshold
the L2 distance between consecutive segments with repeated transitions. If the L2
distance is low, we know that the consecutive segments are happening in a simi-
lar location as well. In our datasets, this is a good indication of looping behavior.
If the L2 distance is larger, then repetition between dynamical regimes might be
happening but the location is changing.

For each demonstration, we define a segment s( j)[t] of states between each transi-
tion states. The challenge is that s( j)[t] and s( j+1)[t] may have a different number of
observations and may be at different time scales. To address this challenge, we ap-
ply Dynamic Time Warping (DTW). Since segments are locally similar up-to small
time variations, DTW can find a most-likely time alignment of the two segments.

Let s( j+1)[t∗] be a time aligned (w.r.t to s( j)) version of s( j+1). Then, after align-
ment, we define the L2 metric between the two segments:

d( j, j+1) =
1
T

T

∑
t=0

(s( j)[i]− s( j+1)[i∗])2

When d ≤ δ , we compact two consecutive segments. δ is chosen empirically and
a larger δ leads to a sparser distribution of transition states, and smaller δ leads
to more transition states. For our needle passing and suturing experiments, we set
δ to correspond to the distance between two suture/needle insertion points–thus,
differentiating between repetitions at the same point vs. at others.

However, since we are removing points from a time-series this requires us to
adjust the time scale. Thus, from every following observation, we shift the time
stamp back by the length of the compacted segments.
4.5 State-Space Clustering
After compaction, there are numerous transition states at different locations in the
state-space. If we model the states at transition states as drawn from a GMM model:

x(t)∼ N(µi,Σi)

Then, we can apply the DP-GMM again to cluster the state vectors at the transition
states. Each cluster defines an ellipsoidal region of the state-space space.
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Algorithm 1: The Transition State Clustering Algorithm
1: Input: D , ρ pruning parameter, and δ compaction parameter.
2: n(t) =

(x(t+1)
x(t)

)
.

3: Cluster the vectors n(t) using DP-GMM assigning each state to its most likely cluster.
4: Transition states are times when n(t) is in a different cluster than n(t +1).
5: Remove states that transition to and from clusters with less than a fraction of p demonstrations.
6: Remove consecutive transition states when the L2 distance between these transitions is less than δ .
7: Cluster the remaining transition states in the state space x(t +1) using DP-GMM.
8: Within each state-space cluster, sub-cluster the transition states temporally.
9: Output: A set M of clusters of transition states and the associated with each cluster a time interval of transition

times.

4.6 Time Clustering
Without temporal localization, the transitions may be ambiguous. For example, in
circle cutting, the robot may pass over a point twice in the same task. The challenge
is that we cannot naively use time as another feature, since it is unclear what metric
to use to compare distance between

(x(t)
t

)
. However a second level of clustering by

time within each state-space cluster can overcome this issue.Within a state cluster,
if we model the times which change points occur as drawn from a GMM:

t ∼ N(µi,σi)

then we can apply DP-GMM to the set of times. We cluster time second because we
observe that the surgical demonstrations are more consistent spatially than tempo-
rally. This groups together events that happen at similar times during the demonstra-
tions. The result is clusters of states and times. Thus, a transition states mk is defined
as tuple of an ellipsoidal region of the state-space and a time interval.

5 Results

5.1 Experiment 1. Synthetic Example of 2-Segment Trajectory

In our first experiment, we segment noisy observations from a two regime linear
dynamical system. Figure 3 illustrates examples from this system under the different
types of corruption.
Evaluation Metric: Since there is a known a ground truth of two segments, we
measure the precision (average fraction of observations in each segment that are
from the same regime) and recall (average fraction of observations from each regime
segmented together) in recovering these two segments. We can jointly consider pre-
cision and recall with the F1 Score which is the harmonic mean of the two:

f 1 =
2 · precision · recall
precision + recall

We compare three techniques against TSC: K-Means (only spatial), GMM+T
(using time as a feature in a GMM), GMM+HMM (using an HMM to model the
grammar). For the GMM techniques, we have to select the number of segments, and
we experiment with k = 1,2,3 (i.e., a slightly sub-optimal parameter choice com-
pared to k = 2). In this example, for TSC, we set the two user-specified parameters to
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Fig. 3: (a) Observations from a dynamical system with two regimes, (b) Observations corrupted
with Gaussian Noise, (c) Observations corrupted with a spurious inserted regime (red), and (d)
Observations corrupted with an inserted loop(green).
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proaches require more training data as they have to learn transitions, (c) TSC clusters are robust to
spurious regimes, and (d) TSC clusters are robust to loops–without having to know the regimes in
advance.

δ = 0 (merge all repeated transitions), and ρ = 80% (prune all regimes representing
less than 80% of the demonstrations).

First, we generate 100 noisy observations (additive zero mean Gaussian noise)
from the system without loops or spurious states–effectively only measuring the
DP-GMM versus the alternatives. Figure 4a shows the F1-score as a function of the
noise in the observations. Initially, for an appropriate parameter choice k = 2 both of
the GMM-based methods perform well and at low noise levels the DP-GMM used
by our work mirrors this performance. However, if the parameter is set to be k = 3,
we see that the performance significantly degrades. k = 1 corresponds to a single
segment which has a F1 score of 0.4 on all figures. The DP-GMM mitigates this
sensitivity to the choice of parameter by automatically setting the value. Further-
more, as the noise increases, the 80% pruning of DP-GMM mitigates the effect of
outliers leading to improved accuracy.

In Figure 4b, we look at the accuracy of each technique as a function of the
number of demonstrations. GMM+HMM has more parameters to learn and there-
fore requires more data. GMM+T converges the fastest, TSC requires slightly more
data, and the GMM+HMM requires the most.

In Figure 4c, we corrupt the observations with spurious dynamical regimes.
These are random transition matrices which replace one of the two dynamical
regimes. We vary the rate at which we randomly corrupt the data, and measure the
performance of the different segmentation techniques as a function of this rate. Due



Transition State Clustering 11

to the pruning, TSC gives the most accurate segmentation. The Dirichlet process
groups the random transitions in different clusters and the small clusters are pruned
out. On the other hand, the pure GMM techniques are less accurate since they are
looking for exactly two regimes.

In Figure 4d, introduce corruption due to loops and compare the different tech-
niques. A loop is a step that returns to the start of the regime randomly, and we vary
this random rate. For an accurately chosen parameter k = 2, for the GMM-HMM, it
gives the most accurate segmentation. However, when this parameter is set poorly
k = 3, the accuracy is significantly reduced. On the other hand, using time as a GMM
feature (GMM+T) does not work since it does not know how to group loops into the
same regime.

5.2 Surgical Experiments: Evaluation Tasks
We describe the three tasks used in our evaluation, and show manually segmented
versions in Figure 5. This will serve as ground truth when qualitatively evaluating
our segmentation on real data.

Circle Cutting: In this task, we have a 5cm diameter circle drawn on a piece of
gauze. The first step is to cut a notch into the circle. The second step is to cut
clockwise. Next, the robot transitions to the other side cutting counter clockwise.
Finally, the robot finishes the cut at the meeting point of the two incisions. As the left
arm’s only action is maintain the gauze in tension, we exclude it from the analysis.
In Figure 5a, we mark 6 manually identified transitions points for this task from
[24]: (1) start, (2) notch, (3) finish 1st cut, (4) cross-over, (5) finish 2nd cut, and (6)
connect the two cuts. For the circle cutting task, we collected 10 demonstrations by
non-experts familiar with operating the da Vinci Research Kit (dVRK).

We apply our method to the JIGSAWS dataset[8] consisting of surgical activity
for human motion modeling. The dataset was captured using the da Vinci Surgical
System from eight surgeons with different levels of skill performing five repetitions
each of

Needle Passing: We applied our framework to 28 demonstrations of the needle
passing task. The robot passes a needle through a loop using its right arm, then its
left arm to pull the needle through the loop. Then, the robot hands the needle off
from the left arm to the right arm. This is repeated four times as illustrated with a
manual segmentation in Figure 5b.

Suturing: Next, we explored 39 examples of a 4 throw suturing task (Figure 5c).
Using the right arm, the first step is to penetrate one of the points on right side. The
next step is to force the needle through the phantom to the other side. Using the left
arm, the robot pulls the needle out of the phantom, and then hands it off to the right
arm for the next point.

5.3 Experiment 2. Pruning and Compaction
In Figure 6, we highlight the benefit of pruning and compaction using the Suturing
task as exemplar. First, we show the transition states without applying the com-
paction step to remove looping transition states (Figure 6a). We find that there are
many more transition states at the “insert” step of the task. Compaction removes the
segments that correspond to a loop of the insertions. Next, we show the all of the
clusters found by DP-GMM. The centroids of these clusters are marked in Figure
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(a) Circle Cutting

1. Start

2. Notch

3. 1/2 cut

4. Re-enter

6. Finish

5. 1/2 Cut

(b) Needle Passing

1.Start

2.Pass 1

3. Hando!

4. Pass 2

5. Hando!

6. Pass 3

7. Hando!

8. Pass 4

1. Insert

2. Pull

3.Hando! 4. Insert

5. Pull

6.Hando! 7. Insert

10. Insert

8. Pull

9.Hando!

11. Pull

(c) Suturing

Fig. 5: Hand annotations of the three tasks: (a) circle cutting, (b) needle passing, and (c) suturing.
Right arm actions are listed in dark blue and left arm actions are listed in yellow.

6b. Many of these clusters are small containing only a few transition states. This is
why we created the heuristic to prune clusters that do not have transition states from
at least 80% of the demonstrations. In all, 11 clusters are pruned by this rule.

Fig. 6: We first show the transition states
without compaction (in black and green),
and then show the clusters without pruning
(in red). Compaction sparsifies the transi-
tion states and pruning significantly reduces
the number of clusters.
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5.4 Experiment 3. Can Vision Help?
In the next experiment, we evaluate TSC in a featurized state space that incorporates
states derived from vision (Described in Section 5.1). We illustrate the transition
states in Figure 7 with and without visual features on the circle cutting task. At each
point where the model transitions, we mark the end-effector (x,y,z) location. In par-
ticular, we show a region (red box) to highlight the benefits of these features. During
the cross-over phase of the task, the robot has to re-enter the notch point and adjust
to cut the other half of the circle. When only using the end-effector position, the
locations where this transition happens is unreliable as operators may approach the
entry from slightly different angles. On the other hand, the use of a gripper contact
binary feature clusters the transition states around the point at which the gripper is
in position and ready to begin cutting again. In the subsequent experiments, we use
the same two visual features.

Fig. 7: (a) We show the transition states
without visual features, (b) and with vi-
sual features. Marked in the red box is a
set of transitions that cannot always be
detected from kinematics alone.
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5.5 Experiment 4. TSC Evaluation
Circle Cutting: Figure 8a shows the transition states obtained from our algorithm.
And Figure 8b shows the TSC clusters learned (numbered by time interval mid-
point). The algorithm found 8 clusters, one of which was pruned out using our
ρ = 80% threshold rule.
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The remaining 7 clusters correspond well to the manually identified transition
points. It is worth noting that there is one extra cluster (marked 2′), that does not
correspond to a transition in the manual segmentation. At 2′, the operator finishes
a notch and begins to cut. While at a logical level notching and cutting are both
penetration actions, they correspond to two different linear transition regimes due to
the positioning of the end-effector. Thus, TSC separates them into different clusters
even though a human annotator may not do so.

Needle Passing: In Figure 9a, we plot the transition states in (x,y,z) end-effector
space for both arms. We find that these transition states correspond well to the logi-
cal segments of the task (Figure 5b). These demonstrations are noisier than the circle
cutting demonstrations and there are more outliers. The subsequent clustering finds
9 (2 pruned). Next, Figures 9b-c illustrate the TSC clusters. We find that again TSC
learns a small parametrization for the task structure with the clusters corresponding
well to the manual segments. However, in this case, the noise does lead to a spu-
rious cluster (4 marked in green). One possible explanation is that the two middle
loops are in close proximity and demonstrations contain many adjustments to avoid
colliding with the loop and the other arm while passing the needle through leading
to numerous transition states in that location.

Fig. 8: (a) The transition states for the
circle cutting task are marked in black.
(b) The TSC clusters, which are clusters
of the transition states, are illustrated
with their 75% confidence ellipsoid.

0.05 0.1 0.15
0

0.01

0.02

0.03

0.04

0.05

X (m)

Y
 (

m
)

(a) Transition States

0.05 0.1 0.15
0

0.01

0.02

0.03

0.04

0.05

X (m)

Y
 (

m
)

(b) Transition State Clusters

1

2

2’ 3

4 5

6

Suturing: In Figure 10, we show the transition states and clusters for the suturing
task. As before, we mark the left arm in orange and the right arm in blue. This task
was far more challenging than the previous tasks as the demonstrations were incon-
sistent. These inconsistencies were in the way the suture is pulled after insertion
(some pull to the left, some to the right, etc.), leading to transition states all over the
state space. Furthermore, there were numerous demonstrations with looping behav-
iors for the left arm. In fact, the DP-GMM method gives us 23 clusters, 11 of which
represent less than 80% of the demonstrations and thus are pruned (we illustrate the
effect of the pruning in the next section). In the early stages of the task, the clusters
clearly correspond to the manually segmented transitions. As the task progresses,
we see that some of the later clusters do not. This is likely due to an error accu-
mulation, where actions that were slightly different at the start became increasingly
varied at the end.

5.6 Experiment 5. Comparison to “Surgemes”
Surgical demonstrations have an established set of primitives called surgemes, and
we evaluate if segments discovered by our approach correspond to surgemes. In Ta-
ble 1, we compare the number of TSC segments for needle passing and suturing
to the number of annotated surgeme segments. A key difference between our seg-
mentation and number of annotated surgemes is our compaction and pruning steps.
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Fig. 9: (a) The transition states for the task are marked in orange (left arm) and blue (right arm).
(b-c) The TSC clusters, which are clusters of the transition states, are illustrated with their 75%
confidence ellipsoid for both arms
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Fig. 10: (a) The transition states for the task are marked in orange (left arm) and blue (right arm). (b-
c) The clusters, which are clusters of the transition states, are illustrated with their 75% confidence
ellipsoid for both arms

Table 1: Surgemes specify primitives at a finer-scale than TSC. Nonetheless, after compaction and
pruning, 83% and 73% of transition clusters for needle passing and suturing respectively contained
exactly one surgeme transition.

No. of Surgeme Segments No. of Segments + C/P No. of TSC TSC-Surgeme Surgeme-TSC
Needle Passing 19.3±3.2 14.4±2.57 11 83% 74%

Suturing 20.3±3.5 15.9±3.11 13 73% 66%

To account for this, we first select a set of surgemes that are expressed in most
demonstrations (i.e., simulating pruning), and we also apply a compaction step to
the surgeme segments. In case of consecutive appearances of these surgemes, we
only keep the 1 instance of each for compaction. We explore two metrics: TSC-
Surgeme the fraction of TSC clusters with only one surgeme switch (averaged over
all demonstrations), and Surgeme-TSC the fraction of surgeme switches that fall
inside exactly one TSC clusters.

6 Conclusion and Future Work
TSC models a set of demonstrations as linear dynamical system motions that transi-
tion, i.e., switch between linear systems, when they enter ellipsoidal regions of the
state space called transition state clusters. To learn these clusters, TSC uses a hierar-
chical application of Dirichlet Process Gaussian Mixture Models (DP-GMM) with a
series of merging and pruning steps. Our results on a synthetic example suggest that
the hierarchical clusters are more robust to looping and noise, which are prevalent in
surgical data. We further applied our algorithm to three surgical datasets and found
that the transition state clusters correspond well to hand annotations and transitions
w.r.t motions from a pre-defined surgical motion vocabulary called surgemes. We
believe that the growing maturing of Convolutional Neural Networks can facilitate
transition state clustering directly from raw data (e.g., pixels), as opposed to the
features studied in this work, and is a promising avenue for future work.
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