
A Framework for End-User Instruction of a Robot Assistant
for Manufacturing

Kelleher R. Guerin, Colin Lea, Chris Paxton, Gregory D. Hager

Abstract— Small Manufacturing Entities (SMEs) have not
incorporated robotic automation as readily as large companies
due to rapidly changing product lines, complex and dexterous
tasks, and the high cost of start-up. While recent low-cost robots
such as the Universal Robots UR5 and Rethink Robotics Baxter
are more economical and feature improved programming in-
terfaces, based on our discussions with manufacturers further
incorporation of robots into the manufacturing work flow is
limited by the ability of these systems to generalize across tasks
and handle environmental variation. Our goal is to create a
system designed for small manufacturers that contains a set of
capabilities useful for a wide range of tasks, is both powerful
and easy to use, allows for perceptually grounded actions, and
is able to accumulate, abstract, and reuse plans that have been
taught. We present an extension to Behavior Trees that allows
for representing the system capabilities of a robot as a set of
generalizable operations that are exposed to an end-user for
creating task plans. We implement this framework in CoSTAR,
the Collaborative System for Task Automation and Recognition,
and demonstrate its effectiveness with two case studies. We
first perform a complex tool-based object manipulation task
in a laboratory setting. We then show the deployment of our
system in an SME where we automate a machine tending task
that was not possible with current off the shelf robots.

I. INTRODUCTION

There is increasing interest in the deployment of robotics
in small manufacturing entities (SMEs) in order to enhance
production efficiency and quality. However, SMEs present
a number of unique challenges. First, SMEs must be able
to rapidly adapt production lines for new products with
small lot sizes. This requires robots to be easily repurposed
to accomplish different roles in an ever-evolving workflow.
Further, such repurposing should ideally be within the ca-
pabilities of a shop floor worker, and not require extensive
training or specialized programming skills. Finally, systems
have to adapt to unstructured environments where equipment,
tools, and parts, most of which are not fixtured, may vary
in position, orientation, or shape. While recent low-cost
“collaborative” industrial robots have increased adoption of
robotic automation in SMEs [1], many of these fundamental
issues are still barriers that prevent SMEs from bringing
robotic automation into their facilities.

To make these ideas more concrete, consider the examples
shown in Figure 1A-C which we have taken from Marlin
Steel, an SME that specializes in manufacturing metal wire-
form and sheet metal products. Although Marlin has five

*This material is based upon work supported by the National
Science Foundation under Grant No. NRI-1227277. Authors can be
reached by email at: {kguerin2, clea1, cpaxton3}@jhu.edu
and hager@cs.jhu.edu.

All authors are with the Dept. of Computer Science, Johns Hopkins
University, Baltimore, MD, USA.

Fig. 1: Typical tasks at an SME specializing in metal
products. (A) shows a hand bending task, (B) shows a spot
welding task, (C) shows a 2D wire bender tending task, and
(D) shows the system presented in this paper accomplishing
the same task as the human worker in (C).

robots in its production facility, many manufacturing tasks
continue to use hand tools (Figure 1A,B) for which there are
no simple, flexible, cost-effective alternatives. However, tasks
are highly repetitive and could, in principle, be automated
if a robot could be easily trained or programmed to repeat
the required motion. Tending available automation equipment
such as the 2D planar wire bender shown in Figure 1C
presents additional challenges due to the variability in part
size and shape, and requires accounting for the changing
positions of mobile racks and the variable timing of the
aging wire bender. As a result, Marlin uses a human worker
to collect the completed parts as this is more cost effective
than attempting to program an industrial robot to perform this
“simple” transfer task. As we will further describe below, our
system, CoSTAR, was successfully deployed in roughly 30
minutes to perform this task as shown in Figure 1D.

Our goal is to develop a practical framework for de-
ployment of robot assistance in an industrial setting that
addresses the limitations outlined above. More specifically,
our approach is to develop a system for instructing a robot

assistant that has the following attributes:
1) The system contains a nominal set of capabilities that

are consistent with the tools, processes and working
environment of a typical small manufacturer.

2) The system can combine elements of traditional pro-
gramming and direct demonstration in a flexible, easy-
to-use, and principled manner to extend capabilities.

3) The system is perceptually grounded so that task
performance is robust to modest changes in the envi-
ronment and task descriptions can be abstracted with
respect to the objects involved.

4) The system is able to accumulate, abstract, and reuse
plans that it has been taught akin to how an assistant
gains skill with instruction and experience.

In the remainder of this paper we describe the conceptual
framework for CoSTAR, a system for collaborative robotics
for manufacturing. We describe the core execution frame-
work we have developed for CoSTAR and emphasize the
use of Behavior Trees as the core task representation. We
describe how Behavior Trees are connected with a set of
robot capabilities, how they are perceptually grounded, and
how abstract task descriptions result. Additionally, using
Behavior Trees as a task specification allows transparent
analysis and generalization of structure, composition, and
classification of execution traces relative to a dictionary of
known tasks. We detail the implementation of CoSTAR and
describe its application to processes like kitting and material
transfer in industrial manufacturing and describe the results
of a pilot deployment at Marlin Steel.

II. RELATED WORK

There is a large space of work on improving interaction
with robots for industrial applications, as well as task mod-
eling and knowledge representation for robots.

A. Robot Assistants and Collaboration

There have been several efforts for creating collaborative
robotic assistants for industrial tasks. The robot assistant in
the rob@Work [2] project could be programmed by the user
with specific actions. The PowerMate project [3] provided
human-robot collaboration based on the force exerted by
the user. More recent work by Hawkins et al. performed
assistance by recognizing which part of the task the user is
executing [4]. We take a hybrid approach to collaboration
by explicitly defining a task plan for the robot and providing
perceptually grounded events the system can detect as input
for certain actions. Finally, robot safety has been addressed
by others (e.g. [5], [6]); we specifically do not address the
safety of collaborative industrial robots.

B. Robot Task Definition

Numerous systems exist for building complex robot task
plans based on sensor data. SMACH is a ROS-based frame-
work for building robot task models as hierarchical con-
current state machines [7]. ROSCo built upon SMACH
to provide an easy-to-use system for defining perceptually
grounded task plans in a home environment [8]. Other work

by Pedersen et al. used a gesture-based interface to create a
task plan for a mobile robot in an industrial setting [9].

We build upon Behavior Trees as an alternative to these
approaches. Behavior Trees are gaining popularity as a model
for creating generalizable robot programs [10], [11]. While
initially designed for large industrial processes, more recently
they have been used to implement character AI in video
games [12]. Behavior Trees have also been shown to provide
a more modular, adaptable representation of a robotic task
than traditional models like Finite State Machines [13]. In
this paper we describe how low-level robot capabilities,
perceptual grounding, and generalizable task descriptions
results using Behavior Tree specification.

C. Knowledge Representation

Research in task specifications in terms of symbolic prop-
erties of the world dates back to STRIPS [14]. More recently,
KnowRob was able to parse human-readable task plans from
web sources and turn them into task plans for a PR2 using
OWL ontologies [15]. Work by Balakirsky et al. used a
robot ontology specified in PDDL together with a high level
Canonical Robot Command Language converted into low
level commands to perform a kitting task [16]. Similarly
Huckaby et al. described the SysML description language
for specifying robot tasks [17]. Other work by Dantam et
al. parsed sensor data into symbolic tokens which could
be meaningfully processed by a robot to allow it to safely
interact with a human when playing a game of chess [18].
These systems all assume a detailed ontology exists for the
task, and therefore are not conducive to creating new tasks
in new domains on the fly. Our system does not have a
preconceived task model or ontology; rather, we rely on
the human’s domain specific knowledge to define the task,
allowing for flexibility to new tasks and domains.

III. A FRAMEWORK FOR ROBOT TASK SPECIFICATION

Our proposed framework aims at representing tasks in
a way that provides easy task manipulation, visualization,
and analysis. It is designed with the mindset that a robot
systems programmer will create a set of capabilities and
an end-user will interactively create a task plan with the
exposed functionality. First we define the characteristics of
system capabilities. We then describe how these capabilities
ground a variant of Behavior Trees that supports task ab-
straction which enables easy generalization to new situations.
Throughout the rest of this section we reference the following
transport task: detecting a cup on a table and placing it in a
waste bin.

A. System Capabilities

The core capabilities of any robotic system are ultimately
derived from a set of software and hardware components.
Typically these components are grouped to provide a
concrete functionality (i.e. perform force-based impedance
control, perform object detection, or control a gripper). We
define a system capability as a three-tuple Ω = 〈O, γ, φ〉
where O is a set of exposed operations, γ is a set of

Fig. 2: Diagram of a single capability for Cartesian move-
ment, exposing an action for movement, a query for the
current pose, and three predicates for testing whether the
system is moving, stopped or in the home position.

continuous input to the capability, and φ is a set of
continuous output from the capability. γ and φ are included
to place constraints on the information interfaces (i.e. sensor
signals and hardware) a system must provide to implement
the capability. For example, Figure 2 shows the capability
Ωcart servo for commanding Cartesian motion to a specified
pose. In this case, φ would be encoder readings from the
robot, γ would be commanded joint torques, and O =
{move to, current pose, is moving, is stopped, is home}.

Capabilities produce a set of outputs γ and can only be
used when the required inputs φ are available. Capabilities
can be composed to build more complex systems: for ex-
ample, an object detection capability might be composed
with an object tracker for real-time recognition. For more
information on composition of capabilities, see [19].

Operations O are the set of high-level functions exposed
by a system to a user for creating task plans. A capability Ω
may expose multiple instances of three types of operations:
actions A, queries Q, and predicates P . An action operates
on a set of specified parameters and when evaluated produces
an output in γ that commands the robot. Example actions
include moving to a Cartesian position, opening a gripper
and exerting a force. A query requests some data from the
exposing capability and stores the value to a parameter. From
the transport example, a query could retrieve the Cartesian
pose of the cup. In the wire bending example a query could
determine the state of a manufacturing machine. A predicate
returns only a success value indicating the truth of some
logical statement about the world. For example, if the user
wants to ensure that the robot is grasping an object obj then
they would check if the predicates Pis closed(gripper) and
Ptouching(obj, gripper) are True.

B. Behavior Trees

Behavior Trees provide a structured specification for robot
tasks. Here we briefly describe the formulation. For a more
detailed explanation see [10], [11]. A Behavior Tree T =
{R,N,L,E} is an ordered tree with root R, leaves N,
internal nodes L, and edges E. The leaf nodes, N, are
evaluated at runtime, and the internal logical nodes, L,
provide a control-flow structure to determine how and in
what order the operation nodes are evaluated. The value of

a logic node L ∈ L with some number of children l1, . . . , ln
is defined by evaluating its children according to one of four
policies:

• Parallel nodes evaluate all children simultaneously and
return success only if all children return SUCCESS. In
the transport example the cup and the waste bin can be
detected simultaneously.

• Sequence nodes evaluate each child in order only if
the previous child evaluates to SUCCESS, and returns
SUCCESS once all children have returned successfully.
In the transport example the sequence of actions starting
with moving to the cup would be executed in this
manner.

• Selector nodes evaluate each child in order until any
child returns success, at which point the selector returns
SUCCESS. In the transport example a selector could be
used to “catch” a failure, like in detecting the cup, and
instead command the robot to wait.

• Decorator nodes only have one child and are used
to modify the return value of its child. An iterator
decorator resets its child upon receiving a SUCCESS.
This is useful for repeatedly evaluating a sub-tree as
it succeeds. An enforce decorator resets its child upon
receiving a FAIL, which is useful when the success of
a node is required in order to continue.

Evaluation of a tree begins at the root node, R, and occurs
periodically with frequency δ. This recursive evaluation is
called a “tick”. Once all nodes in the tree are evaluated,
the root returns the value of its child. In general if the tick
reaches a node that has already returned either SUCCESS or
FAIL, that node will not be evaluated again. For all logical
nodes, when the evaluation of a child returns RUNNING,
meaning the child is running some processes that takes
longer than δ, the parent will return RUNNING. When a child
node has returned SUCCESS, it will not be re-evaluated if
ticked again. In this case it is often necessary to reset a
node explicitly, if it needs to be evaluated with every tick
propagation. Following the behavior tree formulation in [10],
this reset event can be initialized by a root or decorator node
(such as the “enforce” node above) and causes the entire sub-
tree under the root or decorator node to be reset.

A Behavior Tree typically has two types of leaf nodes
N ∈ N, “Actions” and “Conditions”. When an action is
evaluated, it invokes some discrete physical process or event
in the world. An action return SUCCESS if the action finishes
successfully, FAILURE if the action fails, and RUNNING
if the action has not completed. Condition nodes serve to
guard or enable the evaluation of sibling nodes. Evaluating a
condition typically performs some test against a fixed value.
If the test is TRUE, the condition will return SUCCESS,
otherwise the condition returns in failure.

C. Task Specification

Ultimately, we would like the robot to perform some task
by leveraging its capabilities from Section III-A, by using
its exposed action operations along with information made

available through queries and predicates. We therefore for-
mulate a task specification as a set of exposed operations that
are completed by the robot to achieve some task. An integral
component of this task specification is the logical structure
that determines in what order and under what conditions
each operation takes place. Therefore, a task specification
at its core is a Behavior Tree where the leaf elements of the
tree are modified to expose capability operations. Formally,
a task specification is the tuple T =< T,Ω,X >, where T
is a Behavior Tree, Ω is the set of capabilities required by
the task, and X is a set of parameters required to instantiate
the operations exposed by Ω.

In a task specification, the leaf nodes of T correspond
to exposed operations from the capabilities Ω. A behaivor
tree action corresponds to a capability action operation, and
follows the same evaluation pattern as described in Section
III-B. When this action operation is evaluated, it will send
some command, such as “move” to the robot. Queries are
another operation that now acts as a behavior tree leaf node.
When evaluated, a query will expose some piece of data
to the rest of the nodes in the tree. This data is held in a
named parameter that other nodes in the tree can use. This is
similar to what is sometimes called a blackboard (i.e. [20]).
For instance in the transfer task above a query could expose
the position of the cup as a parameter CUP_POSE which
can be used by other operations. Capability predicates are
exposed as behavior tree conditions in a task specification.
Rather then testing some value as described above, a task
specification condition tests if a capability predicate is true.
For example in the transfer task above, assuming a capability
has the predicate HOLDING, a condition can be used to check
if the robot is holding a cup.

A task plan is a task specification where all parameters
required by the Ω have been defined. For example, a task
specification for the transfer task above would include op-
erations to find an object, move to its location, grasp that
object, and release. In a defined task plan the object would
be set to value CUP and the release location would be set to
the pose of the waste bin. The instantiation of parameters in
a task plan can be done by the user for “fixed” parameters
or can be generated by queries. The graphical user interface
used to instantiate fixed parameters is discussed in Section
IV-A.

Figure 3 shows the transfer task. In the diagram, logical
nodes are symbolized in white: root “(/)”, parallel “|A|”,
selector “(?)” and sequence “− >”. The colored operation
nodes have a field for parameters such as CUP_POSE and
CUP. In the task the parameters CUP and BIN represent
object detection models and the parameters CUP_POSE and
BIN_POSE represent Cartesian poses.

This plan operates by detecting a cup and bin object and
then checks a condition to see if the cup is found. If so, it
queries the location of the cup and bin and store those poses
in parameters CUP_POSE and BIN_POSE respectively. The
system then performs the movement and grasp sequence
starting with action MOVE_TO[CUP_POSE] and ending
with MOVE_TO[BIN_POSE] where the system moves to

Fig. 3: A parameterized task plan for finding a cup and
dropping it in a waste bin. If the cup is not found or the
query for the pose of the cup or bin fails then the system
will default to a sleep action. The flow of information through
the tree is also illustrated: (A) detection of the cup, (B) a
condition about its successful detection, (C) a query of its
pose, and (D) the use of that pose in a movement command.
Similarly (1) detection of the bin, (2) a query for the bin
pose and (3) a movement to the bin. (Note: in this figure,
parameters in quote such as "CUP" are fixed parameters
defined by the user, where as parameters not in quotes are
exposed by query.

the pose of the cup, grasps it, and moves to the pose of
the bin where it is dropped. Should any of the conditions
or queries fail the system will fallback to the WAIT action.
The assumption is this tree is being evaluated until it returns
SUCCESS. Therefore if an object is not found initially but
appears in a later evaluation of the tree, OBJECT_FOUND
will return SUCCESS and the tree will continue.

By changing parameter assignments we can easily re-
parameterize operations to adapt them to different tasks. For
example the task plan in Figure 3, which is instantiated for
locating a cup and dropping it in a bin, could easily be re-
instantiated for another object such as a plate by changing
the parameter assignment of CUP to a model PLATE.

IV. COSTAR SYSTEM

We implemented our framework in a new system called
CoSTAR, the Collaborative System for Task Automation and
Recognition, as shown in Figure 4. CoSTAR consists of a
set of system capabilities for performing perception (Percep-
tor), inferring complex object relationships (Predicator) and
human interaction (Collaborator). These are combined with
a task plan and a task definition environment (Instructor).
First we discuss Instructor, a user-friendly task definition
environment for defining task plans and deploying them on
a robot. Then we highlight the capabilities implemented in
our system that are necessary for performing real world tasks.
All of these components are implemented using the Robot

Fig. 4: System overview for CoSTAR: the Collaborative
System for Task Automation and Recognition. CoSTAR is
comprised of a set of system capabilities, a task plan, and
user interface for creating task plans.

Operating System (ROS) [21], and work cross-platform with
a variety of tools and robots.

Fig. 5: The Instructor user interface for creating task plans
and executing them on the robotic system. The canvas
includes areas where the user can (1) create a task plan,
(2) select capability operations and logical internal nodes,
and (3) specify parameters for the plan operations. The task
plan shown here is for transferring a metal plate.

A. Instructor

Instructor consists of a graphical user interface for building
a robot task plan. The Instructor graphical user interface
(GUI) is shown in Figure 5. The GUI contains a canvas
displaying the currently composed Behavior Tree, as well as
a sidebar for selecting different logical and operation nodes
to compose in that tree. Instructor exposes operations from
the capabilities available to the user. This adds modularity to
our system because operations are automatically added for
the end-user as new capabilities are added to the system.

Some system capabilities provide a GUI for defining the
specific parameters required for configuration of their de-
fined operations. For instance, an object detection operation
includes a GUI for specifying a class of object to be detected.
Parameters can also be specified by kinesthetic teaching. For

Fig. 6: A sub-tree for transporting an 8-holed metal plate
can be easily adapted for a different 4-holed plate by: (1)
specifying a new object model for the 4-hole plate, (2)
demonstrating a new pick position relative to the 4-hole plate,
and (3) demonstrating a new placement position relative to
the bin.

example the user can add a waypoint manually by moving
the robot to a specific location for navigation.

The user can save a sub-tree for reuse in other task plans.
This sub-tree may be saved with or without the specified
operation parameters. With a set of saved subtrees the user
can create a complex task plan composed of several smaller
subtrees. This is shown in Figure 7 for the example task
performed in Section V-A. The initial tree (A) contains nodes
for recognizing that a bin has been placed in the workspace
and returning the bin to a specified location. (B) adds a sub-
tree to unholster a suction gripper, (C) adds a sub-tree for
transporting a metal plate to a bin, and (D) adds a sub-tree
for finally holstering the suction gripper. In addition these
sub-trees can be reparameterized so that the same sub-tree
can be used for multiple actions. This is shown in Figure 6.
When sub-trees share variable names it is up to the user to
make sure there are no collisions.

B. CoSTAR System Capabilities

The following capabilities have been implemented to facil-
itate use of CoSTAR on real world tasks. Other capabilities
for controlling our robot, such as velocity control, are also
implemented but not discussed. The different capabilities
implemented in CoSTAR are shown in Figure 4.

Two object recognition capabilities are implemented to
detect and localize objects in the environment. We use an
accurate model-based object recognition system similar to
[22]. We combine this with a simple surface segmentation
based object tracker. Other vision capabilities were imple-
mented specifically to classify metal plates of varying sizes
for one of our tasks described in Section V. Collectively,
these capabilities are referred to as Perceptor in Figure 4.

A capability for occupancy detection was implemented
that returns a predicate is occupied when there are
entities in a selected 3D volume and is empty when it
contains no entities. This region is specified as a sphere in
world coordinates by the user through a graphical interface
during the creation of the task plan. This module can be used

Fig. 7: The task plan for kitting in Section V-A, showing the composition of small sub-plans into a more complex plan. (1)
shows the initial task plan for responding to the handoff of a bin in the workspace, (2) shows the addition of sub-plans for
unholstering and holstering the suction tool, (3) shows the addition of a pick and place sequence for a plate, and (4) shows
a sub-plan for returning the bin to the user at the end of the task.

to detect changes in environment state such as the movement
of a machine in a manufacturing task.

We use an AR tracking capability1, to track objects that
we cannot accurately recognize using computer vision. This
capability is also used to calibrate the cameras on our robot
based on the relative locations of known markers in all
cameras.

A spatial relationship capability computes predicates based
on the pose of known objects in the environment. These
predicates include left of, right of, in front of,
behind from, up from, and down from given in var-
ious frames of reference. The position for each object is
aggregated over time and is used to compute other predicates
indicating whether or not objects are moving relative to each
other. We use the MoveIt ROS interface to compute whether
or not objects are in contact or are near collision, based
on known object meshes and position information. These
capabilities are collectively referred to as Predicator.

Finally, CoSTAR includes a collaboration capability (Col-
laborator) that facilitates human-robot interaction for com-
plex tasks. Currently collaboration is limited to the detection
of events that a human triggers in the world, like moving
an object into place. Future work will incorporate gesture

1ALVAR: http://virtual.vtt.fi/virtual/proj2/multimedia/alvar.html

recognition and fine grained activity analysis to enable more
complex interactions.

V. CASE STUDIES

We present two case studies using a Universal Robots
UR5 robot. The first is in our laboratory and another is
at an SME. There are two RGBD sensors to monitor the
entire environment: one on the “shoulder”, above the robot
stand, and one mounted on the “wrist”, next to the robot end
effector.

A. Laboratory Experiments

We identified small lot spot welding and kitting as two
common industrial tasks that require complex capabilities
difficult for an off-the-shelf industrial robot. Spot welding is
shown in Figure 1B and kitting is examined in other works
such as [16]. In the spot welding task, the user inserts parts
into a fixture to first perform quality assurance and then to
fix them into place for welding. The user then takes the parts
over to a spot welder and presses a foot petal to weld in each
of the five different positions. This task requires a human
because quality assurance using the fixture is a very difficult
perception problem and is impractical to automate using
current technology. To complete this task using CoSTAR, we
would develop a collaborative task plan where the human

Fig. 8: Several sub tasks composed into the complete task
plan. (A) shows Transfer of a metal plate, (B) shows
the robot in position to Unholster the suction gripper,
(C) shows the grasping of the bin for Return to the final
location.

would perform the quality assurance and fixturing and the
robot would perform the time consuming spot welding.

Kitting is another common task performed by SMEs in
which a human worker finds one of each part and moves
them to a specific location. This task is very repetitive and
requires accurate object detection and localization.

We demonstrate the application of CoSTAR to these types
of tasks with an example performed in the laboratory. We
use CoSTAR to teach the robot to create a kit of three metal
plates of varying sizes by first putting one of each part in a
bin that the robot receives from a worker. In this case study
the robot waits for a human to deliver a bin and then returns
the bin with a set of plates at a different location at the
end of the task. This exemplifies the type of human-robot
collaboration necessary for the aforementioned spot welding
and kitting tasks.

We start by creating five simple task specifications rather
than starting with one specialized task plan:

• Unholster: the robot retrieves a suction gripper
• Holster: the robot returns the suction gripper to its

holster
• Transfer: the robot performs a simple pick-and-place

action. The robot locates a metal plate and moves it
from a position on a table to a specified destination in
a box

• Handoff: the robot waits for the worker to put the bin
on the table and then acknowledges that it has found the
bin

• Return: the robot picks up the bin and puts it in a
new location

We then compose a collaborative task plan as shown in
Figure 7. The robot first waits for a Handoff from the

user, uses Unholster to pick up a suction gripper, then
Transfer to move one of each of three types of metal
plates to a bin. It uses Holster to return the suction gripper
to its designated storage location, so that its gripper is free,
and then uses Return to move the bin to a new location.

Figure 8 shows one configuration of the experiment during
execution of the Transfer, Unholster, and Return
sub-tasks for the 3-hole metal plate. This task plan is robust
to changes in position and orientation for the objects and bin.
In addition, in the Transfer portion of the task the robot
will grab any of the three parts that is available. This shows
CoSTAR’s ability to adapt to more complex task structures;
CoSTAR tasks do not need to be a simple sequence of action
primitives.

B. Manufacturing Experiments

To test CoSTAR in a real world situation we deployed
the system at Marlin Steel Wire, an SME specializing in
wireform and sheet metal products. As with many SMEs,
their typical lot sizes are 100 to 1000 parts. They require
quick turn-around times and frequent (sub-daily) changeover
between products. Specifically, our system performed ma-
chine tending with an aging 2D wire bender. This wire
bender produces 2D wireforms at irregular intervals and lacks
a communication port to coordinate with the robot. A human
worker collects the wireforms produced by the bender from
the ground and puts them on a mobile cart.

We first positioned the robot near the wire bender and then
calibrated the cameras using AR markers placed on the wire
bender and the mobile rack. We parameterized an occupancy
operation to detect the state of the machine by looking at the
moving welding arm on the machine. The event where the
machine moves its arm to release a part is recognized so the
robot can then grab the part. At that point the UR5 picks
up the wireform at the exit position from the machine and
transfers it to the rack. The procedure the robot follows is
shown in Figure 9. The entire setup process took two hours,
including setting up the robot with a stand and two RGBD
sensors. Creating a parameterized task plan took roughly 30
minutes, and no code was written on-site.

Trial Bad Weld Bad Grasp System ESTOP
1 1 2 6
2 1 3 7

TABLE I: The causes and number of failures in 2D wire
bender tending task for two 50-part trial runs.

We conducted two experiments where in each run the
machine made 50 parts and the robot placed each one on
a rack. Despite being the first real world deployment of our
system, we achieved 82 successful “catches” out of 100 parts
produced. Table I shows the causes and numbers of failures.
Most of the failures were caused by system ESTOP: when
there was either a bad weld or a bad grasp the robot would
need to be stopped and reset. Even though this only happened
a small number of times it caused a large number of dropped
wireforms because the bender kept producing parts. These

Fig. 9: A sequence of five images showing the successful
execution of the 2D wire bender tending task.

errors could be prevented through better error handling in the
CoSTAR task plan, which would have brought our success
rate up to 93%.

It is simple to adapt this process to a new part: the user
can simply change the waypoint used to grasp the wireform.
The task could also be easily integrated into a more complex
process as demonstrated in Section V.

VI. CONCLUSION

We have described a framework for end-user instruction
of industrial robot assistants that enables complex, event-
driven automated behaviors. Then, we outlined how this
approach can be used to create generalizable task models that
can be composed to accomplish more complex tasks. This
framework was implemented in a system called CoSTAR,
which has been deployed in both laboratory experiments
and real industrial tasks at an SME. The capabilities of this
system correspond to tools and processes crucial to common
tasks in a manufacturing environment. Our case studies
demonstrated how CoSTAR can quickly create programs that
perform common industrial tasks in a way that is robust to
changes in that environment.

In the future, we will perform a user study showing
the ease of use of the proposed system. We will expand
the capabilities of the CoSTAR system focused on human-
robot collaboration to handle more complex interactions. In
addition we will work on formalizing how capabilities are
abstracted across different robot platforms and continue work
on how information can be represented in Behavior Trees.
Finally, we plan on developing a set of tools to evaluate a
collaborative task to determine where best to use a robot
assist in manufacturing.

REFERENCES

[1] P. Waurzyniak, “They’re here: New collaborative robots lend a
helping hand,” Jun. 2013. [Online]. Available: http://www.sme.org/
MEMagazine/Article.aspx?id=73500

[2] E. Helms, R. D. Schraft, and M. Hagele, “rob@ work: Robot
assistant in industrial environments,” in Robot and Human Interactive
Communication, 2002. Proceedings. 11th IEEE International
Workshop on. IEEE, 2002, pp. 399–404.

[3] R. D. Schraft, C. Meyer, C. Parlitz, and E. Helms, “Powermate–a
safe and intuitive robot assistant for handling and assembly tasks,” in
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on. IEEE, 2005, pp. 4074–4079.

[4] K. P. Hawkins, S. Bansal, N. N. Vo, and A. F. Bobick, “Antici-
pating human actions for collaboration in the presence of task and
sensor uncertainty,” in Robotics and Automation (ICRA), 2014 IEEE
International Conference on, 2014.

[5] A. Vick and J. Krüger, “Safe physical human-robot interaction through
sensorless external force estimation for industrial robots,” in HCI
International 2013-Posters Extended Abstracts. Springer, 2013, pp.
616–620.

[6] F. Flacco and A. De Luca, “Safe physical human-robot collaboration.”
in IROS, 2013, p. 2072.

[7] J. Bohren and S. Cousins, “The smach high-level executive [ros
news],” Robotics & Automation Magazine, IEEE, vol. 17, no. 4, pp.
18–20, 2010.

[8] H. Nguyen, M. Ciocarlie, K. Hsiao, and C. C. Kemp, “Ros com-
mander (rosco): Behavior creation for home robots,” in Robotics and
Automation (ICRA), 2013 IEEE International Conference on. IEEE,
2013, pp. 467–474.

[9] M. R. Pedersen, D. L. Herzog, and V. Krüger, “Intuitive skill-level
programming of industrial handling tasks on a mobile manipulator,”
in Intelligent Robots and Systems (IROS), 2014 IEEE Conference on.
IEEE, 2014.

[10] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ogren, “Towards a
unified behavior trees framework for robot control,” in Robotics and
Automation (ICRA), 2014 IEEE International Conference on, 2014.

[11] M. Colledanchise and P. Ogren, “How behavior trees modularize
robustness and safety in hybrid systems,” in Intelligent Robots and
Systems (IROS), 2014.

[12] C.-U. Lim, R. Baumgarten, and S. Colton, “Evolving behaviour trees
for the commercial game defcon,” in Applications of Evolutionary
Computation. Springer, 2010, pp. 100–110.

[13] A. Shoulson, F. M. Garcia, M. Jones, R. Mead, and N. I. Badler,
“Parameterizing behavior trees,” in Motion in Games. Springer, 2011,
pp. 144–155.

[14] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the appli-
cation of theorem proving to problem solving,” Artificial intelligence,
vol. 2, no. 3, pp. 189–208, 1972.

[15] M. Tenorth and M. Beetz, “Knowrob: A knowledge processing in-
frastructure for cognition-enabled robots,” The International Journal
of Robotics Research, vol. 32, no. 5, pp. 566–590, 2013.

[16] S. Balakirsky, Z. Kootbally, T. Kramer, A. Pietromartire, C. Schlenoff,
and S. Gupta, “Knowledge driven robotics for kitting applications,”
Robotics and Autonomous Systems, vol. 61, no. 11, pp. 1205–1214,
2013.

[17] J. Huckaby and H. Christensen, “Modeling robot assembly tasks in
manufacturing using sysml,” in ISR/Robotik 2014; 41st International
Symposium on Robotics; Proceedings of. VDE, 2014, pp. 1–7.

[18] N. Dantam, P. Koine, and M. Stilman, “The motion grammar for
physical human-robot games,” in Robotics and Automation (ICRA),
2011 IEEE International Conference on. IEEE, 2011, pp. 5463–5469.

[19] K. Guerin, S. Reidel, J. Bohren, and G. D. Hager, “Adjutant: A
framework for flexible human-machine collaborative systems,” in
Intelligent Robots and Systems (IROS), 2014 IEEE/RSJ International
Conference on, Sep 2014.

[20] I. Millington and J. Funge, Artificial intelligence for games. CRC
Press, 2009.

[21] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009, p. 5.

[22] J. Tang, S. Miller, A. Singh, and P. Abbeel, “A textured object
recognition pipeline for color and depth image data,” in Proc. of the
IEEE International Conference on Robotics and Automation (ICRA),
2012.

