
 1

MAE 494: Senior Design Project
Spring 2011
Final Report

Project Franklin

OBJECT DETECTION AND POSE ESTIMATION USING AN XBOX KINECT
SOLUTIONS IN PERCEPTION CHALLENGE 2011

Colin Lea
colinlea@buffalo.edu

Kevin Yam
kevinyam@buffalo.edu

Dan Molik
damoli@buffalo.edu

Lai Lee
lailee@buffalo.edu

ABSTRACT
The following report details an entry into the Solutions in
Perceptions Challenge as part of the 2011 International
Conference on Robotics and Automation (ICRA). The goal of
this competition is to determine the pose and classification of
household objects within a series of increasingly complex
scenes using an XBox Kinect. Contributions are split between
the training and detection phases of our system. Through
comprehensive evaluation we ultimately found the best results
using a table-removal-based object detection system, texture-
based classification using the Scale-Invariant Feature
Transform (SIFT) and pose estimation using Multi-Resolution
Occupied Lists (MROL). Preliminary results show high
classification accuracy and adequate pose estimation on the
training datasets.

Introduction
Computer vision is increasingly important for
applications in mobile robotics. The ability to determine
information about your surroundings allows for better
navigation and situational awareness. For example, if a
robot is being used in a rescue scenario where it is trying
to find humans in a burning building, computer vision
techniques could be used to map the environment and
detect people. The robotics company; Willow Garage,
specializes in domestic robotics meant for home and
business use. For a robot to interact in a home or office
setting it is important to be able to recognize different
physical objects. For example, in a nursing home a robot
could be used to take care of an elderly immobile patient
by performing tasks such as getting food or drink from an
outside area. Vision is necessary to identify objects and
avoid hazardous things in the way.

Another example is autonomous driving. A robot can
recognize its surroundings so that it can safely follow a
road. Moreover, the vehicle can notice visual indicators
such as stop signs and speed limit signs and make
corresponding adjustment. Autonomous driving systems
will potentially be much safer than current manual
driving.

Figure 1 The Microsoft Kinect is used to gather data from
our environment. Our data comes in the form of three
dimensional pointclouds and two dimensional color and
depth images.

With the advent of the Microsoft Kinect, the cost of
obtaining three dimensional data has been greatly
reduced. Traditionally, costly stereoscopic cameras with
on-board stereo-on-a-chip processors are used. These
methods are not only expensive but give mediocre data
quality [1]. Previous work by one of the group’s members
shows that the range error and interpolation distance are
greater on a traditional stereo setup versus the Kinect
[2]. The Kinect can output a three-dimensional pointcloud
using a camera-projector pair. The low cost enables a

 2

growing subfield of computer vision, due to the new
availability of data. The ICRA Solutions in Perception
competition showcases this combination in order to bring
forth potential innovations of new pointcloud based
techniques that further improve spatial accuracy. ICRA
will continue this competition for the near future,
progressively setting goals that are more difficult. The
intention is to challenge participants to write algorithms
to break current barriers of computer vision and robotic
perception.

The two key technological requirements are performing
object recognition and pose estimation using data from
the Kinect, robot pair. Object recognition refers to
correctly identifying what object(s) are in the scene. Pose
estimation refers to determining the six degrees of
freedom for pose of the identified objects. This includes
complete position and orientation data. In the first round
there will be one object on a table. The next three rounds
get progressively harder by adding more objects to the
world scene. The top three teams will then compete by
running their system using a real robot that grasps the
objects.

Some other challenges include: occlusion, dealing with
objects that are not fully visible block; similar texture,
classifying objects in a way that the algorithm will not be
confuse with alike objects; noise, filtering data that is
unimportant so that accuracies are improved; and object
movement, tracking object as time varies because the
objects are not stationary.

Before proceeding into further discussion of our system,
it is worth showing imagery related to our final goal. In
the following Figure 2, an object that we need to classify
is placed on top of a turntable. We must extract the
object, classify it, and determine its position and
orientation.

Figure 2 A representative samples of what one of the multi-
object data sets will look like.

The team took an iterative approach to finding the best
solution to this problem. A selection of algorithms were
chosen and tested with comparative results. Ultimately
we determined our best strategy to meet the objective of
the competition:

Training - Learn new objects into the system

• Features Extraction - Using SIFT
• Model Alignment - Using MROL

Detection - Recognizing and determining object pose
• Table Removal using Singular Value

Decomposition and Random Sample Consensus
• Feature detection using SIFT which matches the

current scene model with models in our database
• Pose Estimation using of MROL

Individual interest varies from mild curiosity in computer
vision to pursuit of a graduate degree in this area. General
algorithm development and project management is
applicable to all group members for continuing education
and for corporate employment.

Competition Requirements

A set of rules can be found on the official Solution In
Perception web page [3]. First, we summarize these rules
and then go into detailed customer requirements and
engineering specifications.

The setting of the competition is to imitate an office
setting with indoor fluorescent light and object that is
located 0.6 to 1.2 meter away. For the competition, the
Willow Garage PR-2, see Figure 3,will be stationary but
away from the rotating table with the distances mention

 3

above. The algorithm is to be complied in C++ or python
so that it is compatible with the robot’s operating system
(Robotics Operating System). Specifications include dual
quad-core Xeons for a total of twenty threads,
GNU/Linux with the Robotic Operating System libraries
installed, along with numerous other sensors and
manipulators a more detailed list can be found here [1].
The computational hardware used is designed to the
purpose of this project: recognition of objects. Therefore,
the hardware and the setup is optimized for the computing
and running of such task.

Figure 3 The Willow Garage PR-2 robot

Object recognition is done with a library of 50 known
objects. Training data for 35 of these is available online.
The data includes color imagery, point clouds, and
coordinate transforms necessary for generating models
for use. Classification requires learning information about
specific features between models that help distinguish
between different objects. Note that “learning” is implied
in the machine learning sense -- the system learns what an
object is, by running algorithms that extract features from
the data set. The values returned are important from a
statistical sense but essentially come down to a set of
numbers.

Figure 4 The 35 objects from the released data set. We have
been given training data for all of these objects. These data

sets contain each of the objects on a turn table and we are
given a pointcloud, imagery, and ground truth pose to train
on.

Additionally, 15 new objects will be added at the time of
the contest. The system must provide a way for the judges
to train the robot to recognize the new objects. Potential
challenges include merging this new data into our
classification system. New data sets are used to determine
if the learning methods are accurate.

The competition takes place at the ICRA in Shanghai,
China on May 10th and 11th 2011. While we ultimately
aren’t able to go to the conference, we will be able to
compete. A colleague from CSIRO (Commonwealth
Scientific and Industrial Research Organization) in
Australia will be at the event and will be presenting on
our behalf. Our code was officially submitted and
accepted on May 1st. It has been stated that there are six
other teams competing aside us.

Customer Requirements

For any products in the market there is always a product
life cycle that concerns the useful period time a product
can be used. More importantly, this cycle maps out
customer groups where surveys can be used to obtain
customers’ requirements. One of the customer groups for
this product is the competition judge, and their
requirement is already laid out in the competition
guidelines. The second group of customer is the end user,
who will try this product without prior knowledge of
computer programming. It is assumed that the robot will
have to be easy to use. “Easy to use” is interpreted as
simple buttons that serve obvious functions. These
customer requirements, technical specifications and target
settings are shown in the table below.

Customer
Requirements

Technical
Specs

Target Setting

Learn new
objects

Is there a
function to add
new objects

Yes (and it
shouldn’t greatly
affect runtime)

Identify
Objects

Classification
accuracy

Maximize the
percentage

 4

Find position
of the object

Positional
Error
Tolerance

+/- 2 Centimeter

Fast
processing
speed

Processing
Time

Less than 15
seconds

Works with
necessary
operating
system

Robot’s
operating
system.

Programming
language.

Robotic Operating
System (ROS).

Language: C++ or
Python

The system
should be easy
to use

Number of
steps to train
new object.

Number of
steps to delete
old object.

Number of
step to run
recognition
program.

A button to learn.

A button to delete.

A button to
recognize and pose
estimate.

Low financial
and
computational
cost

Cost of
equipment
(hardware)

Computational
cost of
algorithms

Lower in cost
compared to
stereoscopy

Minimize
computational cost
while retaining
classification and
pose fidelity

Figure 5 Customer Requirements and Technical
Specification.

Learn new objects
The computer will have to learn new objects and be able
to recognized and identify them in the future. There
millions of objects in this world and pre-loading all of
them into the robot would be an expensive and futile
exercise in computation and storage optimization.
Therefore an alternative solution is used; an algorithm

that will allow the robot to learn and recognize a new
object. The robot will essentially scan the object on a flat
table in a room setting. It will then store these new
objects for future identification. Also, it will have to store
this information in a compact size so that the memory
footprint is minimized, effectively increasing the amount
of objects it can recognize.

Recognition of the object
Recognition of the object should be accurate such that the
object is classified with a set amount of certainty. Ideally,
the object must be identify with near 100% accuracy. A
central objective of this project is for the robot to find the
specified object and identify it, otherwise the algorithm is
effectively unimplemented.

Position of the object
The position of the object relative to a world coordinate
frame must also accurate, with an error of tolerance of +/-
2 centimeter. This is another objective the project must
satisfied as per point distribution in the competition rules.

Processing Speed
The algorithm will respond in the least amount of time
possible. Ideally, it should response within 15 seconds.
Anymore time and the robot should automatically end the
iteration and output an error message, and assume the
algorithm should be restarted.

Compatible
The algorithm is written in a language that is compatible
with the operating system. It is our prime concern that the
algorithm is fully compatibility with ROS. The
programming language used should be C++ or Python.

Easy to Operate
Due to the numerous times the program has to run, the
time and steps it takes to operate the algorithm inside the
robot should be simple and fast. Therefore, the number of
steps the robot takes to learn new object is minimized and
the number of steps to run the recognition program is
minimized. Ideally there should be a command to learn,
and a command to recognize object.

Computational complexity
In this aspect, we want to optimize functionality of this
computational algorithm without increasing cost. In other
words, a program with more or better functions often
come with cost of longer run time. Therefore, it is
essential in finding a balance in between them.

 5

Problems and Challenges

Unique features of object
Our classification method recognize the object according
to it’s characteristics. It is direct, straightforward to
distinguish between a circular and rectangular object but
it is more difficult to distinguish between a set of
cylindrical object with different dimension. Therefore,
unique features over a set of similar objects must be
found in order to get an accurate classification.

Occlusion
Obscured objects will need to be addressed in order to be
awarded the most possible points in the competition. On
primary examination, some sort of data extrapolation
would be a method to fill the data set to be able to use the
same algorithm method as before. This could lead to
erroneous data that is most likely misleading, a preferable
method would be to simply preform a modified sampling,
and have a weighting parameter to determine the degree
of confidence that a partial data set provides. Of course
programming ease and solution accuracy could lead to a
different solution entirely.

Noise
Misleading data that is captured from varying lighting
and changing background, which affects the results of the
output. This input data will have to be treated so that it
does not carry the error to the result. This process is
known as filtering, where some of the data is minimized
and some of the data are amplified in the effort to
improve accuracy.

Potential and Planned Approaches

For our competition, there is a hierarchy of potential
directions. On a high level we can tend towards a two
dimensional or three dimensional pipeline while working
with data, as described in the next section. On a lower
level, we must consider a variety of different approaches
for each sub-section of our project, which are
Segmentation, Pose Estimation, Classification, and
Tracking. In the following two sections, we discuss some
potential solutions as well as our current planned path.

High Level
On a high level, we much choose between two-
dimensional and three dimensional data pipelines. A two
dimensional pipeline implies that we are working directly

with images while a three dimensional pipeline means we
are using spatial “pointcloud” data. A pointcloud is a
datatype that stores the three dimensional location and
color of all points in an environment. By working with
images, we can leverage many computer vision tools such
as OpenCV (Open Computer Vision library), NumPy
(Numerical/Matrix Library) and SciPy (Scientific+Vision
Library). Because we have these tools available we can
prototype different methods faster, without having to
implement each algorithm directly. Because the idea of
using three-dimensional data is relatively newer there are
fewer tools available.

Ultimately, we chose to take a hybrid approach that uses
two-dimensional techniques for classification and three-
dimensional techniques for pose estimation.

Low Level
Segmentation is the process of separating image pixels
into different groups. The objective is obtaining a
representative output for next step: classification. We
have a wide range of choice in segmentation method:
histogram-based, part models, active-contour models, and
others. We started by tending towards region-based
algorithms because of their tendency to keep neighboring
pixels together. Later we show that other methods such as
histogram-based processes can have problems where
different areas of an image are segmented as one area.
Ultimately we employ a table-based segmentation method
which works predominately on three dimensional data.

Pose estimation is the process of determining the
position and orientation of an object. Our original
approach involved an iterative method that starts by
matching primitive shapes to determine pose. After
classification, a more complicated model would be used
to refine the pose to increase robustness. Ultimately only
a single iteration was performed using MROL due to
computational complexity. It was not possible to run this
multiple times within time constraints.

The crux of the competition lies in the actual
classification. The ability to accurately define an object
requires detecting notable features and comparing them to
our list of potential objects. Recent work shows that
matching specified target objects in a scene can be
computed with high accuracy using SIFT, SURF, and
other feature detection techniques [4]. Using image-based
techniques, we must be able to match what is in our scene
with a similar representation of known models in our
dataset. We create a database that stores information

 6

about each of our objects with corresponding image and
feature data for all angles. We are able to attempt to
match our current segmented object with the potential
objects in the database. Approaches using ensemble
classifiers such as random forests or bagged decision
trees were investigated but not necessary in the end.
Some other methods of accomplishing classification
include using parts models, three dimensional model-
matching, grammar models, and simple feature
extraction. A Scale-Invariant Feature Transform is used
in our final system.

Tracking is used to improve the accuracy of position data
over a period of time. The position data measured from
the Kinect carry noises, which gives an uncertainty of
positions. Using a tracking method, the noisy
measurement is recorded and calibrated to a new position,
which will be closer to the actual position. Tracking is
useful in that it allows the robot to know where the object
is at all times. There are two approaches this solution,
linear and non-linear. A Kalman filter is a linear approach
where it assumes that the noise variation is under the
assumption of Gaussians distribution. This is favorable
because any system that can be simplified to a linear
solution is much simpler to work with. The non-linear
approach involves the uses of particle filter which provide
better accuracy but much more complicated since it deals
with random noise variations. Ultimately the use of
Kalman filter is preferred because the accuracy between a
linear approach and non-learn approach is relatively
small. One advantages of using a Kalman filter is that it
only requires two steps to do tracking: prediction and
update. The system measures the position of the object,
predicts the path it will travel, and measures the position
again. This process repeats and becomes more accurate as
the time step decreases. Unfortunately, due to changes in
competition rules, this work was not included in the final
system. Regardless, we show results from our preliminary
implementation.

Detailed Design

As previously discussed, our software is divided by two
major components: Training and Detection. Each of these
plays a very different role in the whole picture but works
using mostly the same algorithms. In this section we
discuss our final approaches in detail and also talk about
system-level and other related challenges inherent in our
design.

Training:
The training phase is split into three main sections:
background removal, texture extraction, and model
generation. The underlying premise of this phase is that
we are trying to store a model of all of our 35 objects. We
want to be able to model each of the objects in both two
dimensional and three dimensional representations. Both
geometry and texture are important for our detection
algorithms, so we must extract them from the input data.
The input is our initial data set which includes a colored
pointcloud, a two dimensional image, and the ground
truth pose. The output is a numerical description of the
texture and a complete pointcloud of our object.

Figure 6 Algorithm pipeline, for use with training new
objects.

Background removal:
In order to classify each of the objects in a data set, we
must first detect which parts of the scene contain an
object and which are parts of the background. Because we
are given the ground truth position and orientation of each
object in the training data we can easily eliminate the
background. Mathematically, this results in transforming
all of the points in the scene by the inverse of the ground
truth pose. After this transformation the object is at zero
position [xyz=0,0,0] and is orientated directly upwards.
We simply use a box filter to isolate the object, which
eliminates all points outside of a specified bound. In our
case we used bounds reflecting the largest object size:
x=+/- 0.15 m, y=+/- 0.15 m, z=+0.3 m.

 7

Figure 7 A single projected frame from a data set

See the section on coordinate transformations to get a
better understanding of how this procedure works.

Texture Extraction:
In our case, texture is defined as structured change of
color in an image. We want to be able to compare the
texture of an object in the scene with all of the textures in
our database in order to perform object classification. Our
biggest problem is that we will see objects at different
positions in the scene and at different orientations. Using
basic image recognition techniques such as template
matching, if we try to match two objects at the same
orientation, if one is farther back in the scene than the
other then they will appear as two distinct objects. Even if
we extracted an object’s color image at multiple scales we
would still have a problem matching at different
orientations. The input data is spaced by 10 degree
rotations, so we do not have enough information to
generate color at all angles.

Over the past decade David Lowe’s work on the SIFT [4]
has garnered a lot of attention for it’s ability to do image
matching. It detects salient features in an image based on
grayscale texture. The following figure shows how a stop
sign, which can be considered a complex pattern, is
matched between two images even though the lighting
and angle are not exactly the same.

Figure 8 SIFT matching demoed on a common stop sign.

SIFT works by finding the maxima and minima on a
Difference of Gaussians [4]. DoG is a method where
multiple versions of an image that are blurred and
sampled at different resolutions are convolved with each
other. By only looking at the extrema the most distinct
sections are kept. This algorithm is also rotationally
invariant due to the way the descriptors are stored. There
are 128 numerical values stored that represent cues
surrounding the feature. These are stored starting at the
dominant orientation surrounding the point and traverse
clockwise. This generalizes the descriptor so that it can
work at varying orientations

Figure 9 SIFT feature extraction pipeline

There is an efficient C++ implementation provided by the
author which has been used. Note, however, that the
matching algorithm has been implemented by us. This is
discussed in the feature matching part in Detection. The
previous picture depicts the process of taking the
extracted image, finding the SIFT descriptors (the blue
circles), and storing them in a database. All of the keys
from each viewpoint in the data set are merged together
into one file per object.

 8

Model Generation
Each frame from a data set represents a different
viewpoint of the object. In order to generate a complete
model we must merge the pointclouds together. Given
that we have the ground truth pose, in theory this
shouldn’t be a problem. However, through experience we
found that the models did not line up particularly well.
The following image shows the resulting pointcloud after
simply merging all of the pointclouds together. There is a
lot of noise, which would throw our pose estimation
results off.

Figure 10 MROL model generation and refinement.

To compensate for this noise we use MROL, developed
by colleagues Julian Ryde and Nick Hillier [5]. This is six
degree of freedom (three position, three orientation)
localization method using a probabilistic multi-resolution
approach with occupied voxel lists. Note that voxels are
the three-dimensional equivalent of pixels. They can
decrease the amount of space necessary for storing sets of
points by a large amount while only slightly decreasing
the accuracy.

As shown in the image, just using the matching algorithm
explicitly does not provide great results. It does a better
job than simply merging the points together but there is
still significant noise, especially in the Y direction. By
selectively adding new pointclouds we were able to
achieve much more accurate results. This works by
calculating the deviation between the centroid of a new
aligned pointcloud and the centroid of the combined
pointcloud. If the deviation is too large (greater than 0.5
cm) then the object is not merged. A similar procedure is
used for rotation. Figure 11 shows the output of the first
10 objects from the data sets.

Figure 11 Objects 1-10 out of the 35 objects in the data sets

Detection
The underlying algorithms in the detection phase are the
same as for training, but the way they are used is
different. Instead of generating new models, we are able
to classify and determine the pose of objects in a scene.
Aside from SIFT and MROL we have developed a
method for eliminating the background by determining
the location and parameters of the surface that the objects
are stationed on. This algorithm has gone through several
different iterations. The process is documented in more
detail in the Segmentation section later.

Figure 12 Detection pipeline for classifying object(s) within
a scene

Table removal
It has been documented in the competition rules that the
objects will be located on a flat surface. From all of the
example data sets we see that this surface is the dominant
plane in the scene. It was hypothesized that if we can
identify and mathematically define the table then we can
remove it from our scene.

 9

Figure 13 Input image

Figure 14 Segmented image used as input in SIFT

In order to mathematically model the table we must be
able to locate it in the scene. A plane is defined by
Ax+By+Cz=D where x, y, and z are any points in a scene
and A, B, and C are defined by the surface normals. D is
the intercept in our case will be set to zero. Given our
three dimensional pointcloud we are able to estimate the
surface normals for each point. This is calculated using
Singular Value Decomposition (SVD) using a set of
neighboring samples. SVD outputs a factorized set of
matrices that split an input matrix into two orthogonal
matrices and a scalar matrix. Importantly, the second
orthogonal matrix can be used to obtain the surface
normals for each patch. This is discussed in greater detail
in the Segmentation section. In Figure 14 the color blue
represents areas that have been removed, yellow is the
isolated object, white is area without valid depth data, and
red is data above the table but outside of our bounds.

Texture-based classification
Once the foreground has been extracted we must
determine the number of objects in the scene and each
objects’ identity. Similar to the training phase, we use

SIFT to extract texture descriptors from the scene. These
are compared to the corresponding descriptors for all of
the trained models. SIFT matching is performed by
calculating the Euclidean distance between the
descriptors in two models,

!

D = sum((A " B)2) ,

where A is the scene descriptor vector, B is a model
vector, and D is the distance. The problem is that there
are 128 numbers per descriptor and there are
approximately 1000 descriptors per trained model. This
takes a long time to compute!

The Lowe paper [4] suggests an alternative metric rather
than Euclidian distance which is much more
computationally efficient but slightly less accurate.
Essentially, instead of taking the sum of the squared
differences, the angle between the vectors comprising the
128 numbers can be calculated. This requires taking the
inverse cosine of the dot product of the two vectors,

!

D = cos"1(A • B) .

 While an open source method for doing this is available
online, it is not computationally efficient. Running this
code in our system resulted in run times of over 15
seconds just for the detection phase! We implemented
this algorithm in Python and vectorized it using the
numerical library Numpy for far superior performance.
We were able to get approximately 1.8x the performance.

Figure 15 SIFT feature matching for “Odwalla” juice
bottle

For single object detection, Maximum Likelihood
Estimation is used to calculate the most likely object
based on the SIFT features. This is mathematically
described as:

 10

!

"estimate = argmax
i

L(X |" i)

where

!

" i is an individual model description, X is the
current scene description, and L denotes likelihood.

The value of the most likely solution is used as the basis
for multi-object detection. Currently a threshold is used,
so if any object is at least 70% as likely as the most likely
solution then it is added as a potential object. If more time
was available, parameter estimation techniques could be
used to learn what percentage is optimal. This requires
taking a large number of data sets, determining the
minimum likelihood for successfully classifying all
objects in the scene, and determining what threshold
minimizes the error in classification.

Pose Estimation
The most likely models are fed into the MROL technique
that has been previously discussed. Using our
classification technique, we calculate an estimated
centroid for the object based on the midpoint of the
descriptor locations. MROL uses a conjugate gradient
method to attempt to align the current scene with the
stored models. The change in position between our
aligned position and the initial guess is used to determine
the pose in sensor coordinates. Figure 16 shows an
example of an “Odwalla” juice bottle found in a scene
and compares it to a model from the trainer.

Figure 16 MROL to SIFT matching for classification of
an object

The scene pointcloud is much more sparse and thus it can
be hard to obtain an accurate alignment. Figure 17 shows
how the algorithm does not always find a good match.
There are additional problems when the scene is entirely
flat. Sufficient geometric texture is required to accurately
align the model.

Figure 17 Model alignment.

Supplemental Challenges
Aside from the primary classification and pose estimation
techniques, several other areas must also be accounted
for. In order to actually use the aforementioned
algorithms there must be a way to interface with the
Robotics platform. In order to simplify prototyping, there
must also be a way of extracting information from the
robotics platform to use in programs such as Matlab.
Additionally, many of the data interfaces that we’re using
are in different coordinate systems or use different
notation. Finally, we discuss tracking, an area that
received significant attention until a change in the
competition rules mid-way through the semester.

System
All of the code for the final competition runs in Linux
using the Robot Operating System (ROS). In order to
compete we must be able to interface our algorithms with
this software and output our results to Comma Separated
Variable (CSV) text files. This required spending a lot of
time learning how to take the data they give us
(pointclouds, images, pose data) and be able to actually
use it. There are hundreds of lines of “wrapper” code,
which takes our algorithm and allow it to work as a
complete system. The following figure shows a high level
overview: we must input the ROS data into our training
and detector code and output the final results to a separate
file.

 11

Figure 18 High level system pipeline.

Additional work was done to allow us to use the data
outside of the ROS architecture. A batch convertor was
created which inputs the ROS data and outputs the
pointclouds, images, and poses into multiple formats that
we can use directly with Python and Matlab. This process
is shown in the following figure.

Figure 19 Written utilities for data extraction to enable

algorithm simplification

Coordinate Systems:
There are 2 primary coordinate systems: the Kinect frame
and the object frame. It is possible to switch between each
of the frames using a set of transformations. For our
results, it has been determined that the position of the
object should be calculated relative to the Kinect frame.
For the final round of competition, it is necessary to find
the exact object pose so that a robot can uses its arm to
move the object. The transformation equation is shown
below along with Figure 20 to demonstrate the
relationship between the two frames. T is the
transformation from the Kinect to the global center
position of the object and R is the relative transformation
between frames. While the object rotates on the turntable
in each data set the T matrix stays static and the R matrix
changes every frame to reflect change about the Z axis.

Postruth = inv(T*R)*Poskinect

Figure 20 Relationship between Kinect frame and

object frame

Additional coordinate problems arose from the use of
different coordinate representations. The rotation in
MROL uses a vector of length 3 with axis-angle notation.
The input into our system is in Rodrigues notation and the
output is a 4x4 transformation matrix. The lack of
documentation regarding which notation was being used
at each step caused trouble. For example, it was assumed
that MROL and the input were using the same notation
because they are both vectors of length 3. We later found
this not to be true.

Tracking:
The competition is in its first year, so it took a couple
months before the rules were completely finalized.
Originally the robot was supposed to move around a
stationary table that had a set of objects. However due to
a sudden change in rules, the new set up uses a stationary
robot with a table that rotates the objects. In the original
setup we anticipated the need to use tracking techniques
to refine our pose estimation. Significant work was put
into this area, but ultimately tracking lost its important
due to a change in rules. Nevertheless, Fig. 21 below
shows a graph using our implementation of a Kalman
Filter for displacement versus time in X, Y, and Z
directions. A Kalman filter assumes there is noise in our
measurements and improves accuracy of the expected
positions. It assumes there is a “hidden” true value that is
being corrupted by the sensor.

Figure 21 Displacement as a function of time in x,y,z
coordinates

 12

Iterative Design Approach
The problems that we are trying to work with cannot be
considered “solved.” This area of computer vision is
being widely researched because the current state of the
art is not adequate for real-time applications such as in
robotics. While there are some directions for object
classification and pose estimation that we have looked
towards, there is no known “best” solution. As such, this
project required a lot of trial and error. We used an
iterative approach with each section until we were
satisfied.

Additionally, In efforts to investigate a larger variety of
algorithms, we decided to have two team members
prototype methods exclusively in Matlab. This leveraged
prior experience that these people had doing engineering
simulation without requiring them to spend inordinate
amounts of time learning a more “complete”
programming language.

Segmenting the object(s) from the background imagery is
a difficult task because of the complex textures that each
object has. We went through three distinct methods of
segmentation including two image-based methods and
one geometric method using 3D pointclouds. In the end,
our final table segmentation technique worked the best. In
the following sections we detail each of the methods and
explain (1) why we investigated the particular technique
and (2) the final results and why we either used it or tried
something different.

Method 1: K-Means
The algorithm we initially attempted was the K-Means
method of segmentation. It is an efficient method for
separating raw data into different groups according to
similarity [6]. Since the intensity of pixels in an object is
close, we considered this method to be useful for
segmentation. Additional reasons for choosing K-Means
were its simplicity and computational cost savings. In
short, the procedure for K-Means is as follow:

K-Means Algorithm:

1.) Initially the data is randomly selected and the centroid
is calculated. (data with 2 properties gives a two
dimensional centroid and data with 3 properties gives a
three dimensional centroid)

2.) The number of centroid returned depends on the
number of group inputs.

3.) The distance between the centroid and each data point
within a group is calculated. If the distance exceeds the
tolerance, it will be excluded from the group.

4.) The procedure is repeated as a new centroid is
calculated. The iterations will be stop if most of the data
is assigned to a group.

Testing
We created our program based on the procedure
described above in Matlab. After several modifications
and improvements of the program, prototyping results can
be seen in Figure 22.

Simulation Results

Figure 22 k-Means simulation results

The simulation results were not expected and do not
satisfy our requirements for segmentation. Figure 22a is
the original input depth image and Fig. 22b is the output
image of K-means method. An ideal output should be
similar to Fig. 22c so that the shape of a bowl is clearly
extracted from the background. However, the output from
K-means extracted the shape of the bowl with some part
of the table. We believe that it is because the pixel in the
lower part of the table share some similarity with the
bowl. As a result, we looked at alternative methods to
obtain better results

Method 2: Watershed Algorithm
Next we tried a watershed segmentation algorithm. Since
the image needed to be divided into different segments
instead of simply separating it from the background, this
algorithm is more suitable than the K-Means algorithm.
However, the procedure for the watershed algorithm is
more complex than previous algorithms because it
requires additional preconditioning of the input image [7].
The following is the procedure for watershed
segmentation:

 13

Watershed Algorithm:

1.) The input image (either depth or RGB image) is
converted into a binary image. A binary image is an
image format with only black and white pixels.

2.) The transformation mentioned above is often achieved
by using threshold segmentation.

3.) A distance transform of the image is the next step.
This transformation labels each pixel with the distance
from the nearest non-zero pixel.

4.) Several local minimum points are chosen based on
grayscale intensity.

5.) A “flooding” process starts from those minimum
points by repeatedly increasing the intensity of the
neighboring groups of pixels. During this process, a
segmented line is formed by any pixels that are merged
together.

6.) This line is used to construct the final segmentation.

Testing
We used Matlab’s built-in watershed function [8] for
testing. However, a tailored algorithm was written for the
distance and binary transforms. The result can be seen in
Figure 23.

Simulation Results

Figure 23 (a) RGB (b) Binary (c) Segmented

Image

From Fig 23, we can see that the bowl is clearly
distinguished from the background. Therefore, it is
considered successful. However, with the multiple objects
seen in Figure 24 in can be shown that the result is
slightly less clear than the single object seen in Figure 23.
The overall results were not acceptable since different
objects can not be classified. In addition, it was
discovered that the segmented result of watershed
algorithm depends heavily on the binary image. In other
words, the binary transform must be reliable to ensure the
quality of the segmented results.

Figure 24 Multi-object scene (a) RGB (b) Binary
(c) Segmented Image

Method 3: Table removal

The watershed segmentation has superior performance
over k-Means, but ultimately doesn’t suit our needs. We
later realized that if the table is first extracted from the
image then we will be able to easily extract the object.

The table extraction can be done using Random Sample
Consensus (RANSAC) where we input points that have
normal vectors pointing upwards I the scene. The
normal’s can be calculated from the depth image by using
Singular Value Decomposition (SVD). As stated before,
RANSAC can be used to compute the parameters of a
mathematical model to the data [9]. The actual model in
our case is generated using Ordinary Least Squares (OLS)
by finding the minimum error about a linear plane. The
advantage to using RANSAC is that it will find the
dominant plane in the entire data set. If OLS was used on
the entire pointcloud then the result would be very noisy.
The following procedure details the RANSAC method:

RANSAC Algorithm

1.) Random data points are selected.

2.) The parameters of a mathematical model (such as a
plane) are estimated based on the selected random data
using Ordinary Least Squares. Specifically a three
dimensional plane was used as a model.

 14

3.) Additional random data points are selected. Then the
difference between the current math model and the new
data points are computed.

4.) Only the data points within tolerance will be included
and a new math model will be constructed with the
additional data points.

5.) The procedure iterates until the math model can
represent a defined proportion of the data.

Since the table is a flat surface, all the normal vectors of it
must point in a similar direction. Therefore, data points
with distance close to a plane represent the table in an
image.

Testing
We implemented the above method for RANSAC in
Matlab. At first, the run time was too slow for final
implementation. By changing the code to utilize vector
and matrix based math, the run time was greatly reduced.

Simulation Results

Figure 25 Data points in three-dimensional space and
the found plane model

In Fig. 25, the red dots represent the normal vectors of a
surface in the image. It is obvious that the set of red dots
in the lower region represents the normal vector of the
table. As a result, a linear plane model is produced around
that region by using our implemented RANSAC
algorithm. We were able to extract the table from an
image based on these computed parameters (coefficients
of a linear plane equation). Figure 26 represents the visual
output of the modeled table. The yellow colored located
in the center is the found table.

Figure 26 Found table in training data

System Results

While we will not know the end results until the
competition on May 10th, we have done preliminary
testing on data sets provided by Willow Garage. As a
whole, the results are higher than expected.

On the high side, the accuracy of the classification is up
to 100% for most of the object on training data. Figure 27
displays these result for 35 objects. From this figure, there
are 15 items with an accuracy of 100%. Twelve items
have 80% accuracy and there are 27 out of 35 items have
accuracy higher than 80%. The average accuracy is 82%.
It should be noted, however, that this is all calculated
based on the same data sets that we trained the objects.
This means that on testing data we most likely won’t get
this high. This is because the features we’re detecting
from these datasets are the exact same ones that are in our
SIFT database. In reality the features will be slight
variations on what we current have stored.

Figure 27 Classification Accuracy of 35 Objects

In regards to pose estimation, based on a small sampling
of data sets the position accuracy is roughly 2cm to 5cm.
In the competition anything below 2 cm gets full credit

 15

and anything between 2cm and 5 cm receives partial
credit. The rotation accuracy is harder to quantify. It has
not be stated exactly how rotational accuracy will be
determined. Because of different coordinate systems and
way to measure it, we cannot determine how much credit
we will likely receive. Visually, it looks like our
orientation is in range of acceptable values (there is
partial credit up to 90 degrees off axis). In general, our
orientation is off by +/- 45 degrees. The running time of
our system varies but is approximately 15 seconds on
average. According to the judges, as long as the system
run time is not significantly more than 15 seconds then
full credit will be received.

However, our system does have significant problems in
some areas. The classification accuracy for scenes with
multiple objects is bad as 5% sometimes. Sometimes this
is because there are objects on the table that are never
trained on our system; these are here to trick us. There are
other problems when the Kinect is oriented on its side, as
shown in Figure 28. We believe that this has to do with
the surface normal calculation done in the object
detection phase.

Figure 28 Detection on a "sideways" data set

In both single and multi-object scenes, if our detection
method fails then the classification and pose are usually
completely wrong.

Conclusion and Future Work

The product has achieved a complete system capable of
our the main objective: object recognition and pose
estimation. While there is significant variation in result
performance, most of the requirements mentioned before
were met or below target. Since most of the material in

this project is new to group members, we learned that
testing is necessary to evaluate results of any conceptual
approach. This led to an iterative approach which allows
you to try many ideas but ultimately increases the
development time.

Going forward changes to the system pipeline will have
to be made to increase algorithm performance and to
provide a set of filtering schemes to increase system
performance.

There are several high level future improvements that
may help obtain better results. Firstly, we can improve the
poor classification accuracy of object in multi object
scenes by using an alternative classifier pipeline. This
new set of classifiers will combine additional method to
avoid mismatching in order to improve overall accuracy.
Additionally, we can decrease the run time of our system
by migrating code to multi-threading and by
incorporating more code optimizations. This can be done
by either programming for multiple CPU cores and or
massive parallel processing on a GPU. Since a GPU has
many more cores than a CPU it can spread the
computation between its cores to get a faster
performance.

While the final results are not yet know, the experience
gained by working on this project has been instrumental
in increasing abstract problem solving skills, written
ability, and analytical thinking abilities.

References
[1] D. Scharstein, R. Szeliski, and R. Zabih, “A taxonomy
and evaluation of dense two-frame stereo correspondence
algorithms,” in Stereo and Multi-Baseline Vision, 2001.
(SMBV 2001). Proceedings. IEEE Workshop on, 2001,
pp. 131 –140.

[2] (In review) Wong, U., Morris, A., Lea, C. et al.
“Comparative Evaluation of Range Sensing Technologies
for Underground Void Modeling.” International
Conference on Intelligent Robots and Systems 2011.

[3] “Solutions in Perception Challenge.” Willow Garage:
http://opencv.willowgarage.com/wiki/SolutionsInPercepti
onChallenge

 [4] Lowe, D. G., “Distinctive Image Features from
Scale-Invariant Keypoints”, International Journal of
Computer Vision, 60, 2, pp. 91-110, 2004.

 16

[5] J. Ryde and N. Hillier. Alignment and 3D scene
change detection for segmentation in autonomous earth
moving. ICRA 2011.

[6] Kardi Teknomo. “K-mean Clustering Tutorial”
:http://people.revoledu.com/kardi/tutorial/kMean/index.ht
ml , 1994

[7] Serge Beucher. “Image segmentation and
mathematical morphology.” May 18, 2010:
 http://cmm.ensmp.fr/~beucher/wtshed.html.

[8] The Math Work Inc. “Matlab - watershed transform”:
http://www.mathworks.com/help/toolbox/images/ref/wate
rshed.html , 1994.

[9] Jose Luis “Ransac C++ example”:
http://www.mrpt.org/RANSAC_C%20%20_examples ,
2007

