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ABSTRACT 
The following report details an entry into the Solutions in 
Perceptions Challenge as part of the 2011 International 
Conference on Robotics and Automation (ICRA). The goal of 
this competition is to determine the pose and classification of 
household objects within a series of increasingly complex 
scenes using an XBox Kinect. Contributions are split between 
the training and detection phases of our system. Through 
comprehensive evaluation we ultimately found the best results 
using a table-removal-based object detection system, texture-
based classification using the Scale-Invariant Feature 
Transform (SIFT) and pose estimation using Multi-Resolution 
Occupied Lists (MROL). Preliminary results show high 
classification accuracy and adequate pose estimation on the 
training datasets. 
 
Introduction 
Computer vision is increasingly important for 
applications in mobile robotics. The ability to determine 
information about your surroundings allows for better 
navigation and situational awareness. For example, if a 
robot is being used in a rescue scenario where it is trying 
to find humans in a burning building, computer vision 
techniques could be used to map the environment and 
detect people. The robotics company; Willow Garage, 
specializes in domestic robotics meant for home and 
business use. For a robot to interact in a home or office 
setting it is important to be able to recognize different 
physical objects. For example, in a nursing home a robot 
could be used to take care of an elderly immobile patient 
by performing tasks such as getting food or drink from an 
outside area. Vision is necessary to identify objects and 
avoid hazardous things in the way. 
 

Another example is autonomous driving. A robot can 
recognize its surroundings so that it can safely follow a 
road. Moreover, the vehicle can notice visual indicators 
such as stop signs and speed limit signs and make 
corresponding adjustment. Autonomous driving systems 
will potentially be much safer than current manual 
driving. 

 
Figure 1 The Microsoft Kinect is used to gather data from 
our environment. Our data comes in the form of three 
dimensional pointclouds and two dimensional color and 
depth images. 

With the advent of the Microsoft Kinect, the cost of 
obtaining three dimensional data has been greatly 
reduced. Traditionally, costly stereoscopic cameras with 
on-board stereo-on-a-chip processors are used. These 
methods are not only expensive but give mediocre data 
quality [1]. Previous work by one of the group’s members 
shows that the range error and interpolation distance are 
greater on a traditional stereo setup versus the Kinect 
[2]. The Kinect can output a three-dimensional pointcloud 
using a camera-projector pair. The low cost enables a 
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growing subfield of computer vision, due to the new 
availability of data. The ICRA Solutions in Perception 
competition showcases this combination in order to bring 
forth potential innovations of new pointcloud based 
techniques that further improve spatial accuracy. ICRA 
will continue this competition for the near future, 
progressively setting goals that are more difficult. The 
intention is to challenge participants to write algorithms 
to break current barriers of computer vision and robotic 
perception. 
 
The two key technological requirements are performing 
object recognition and pose estimation using data from 
the Kinect, robot pair. Object recognition refers to 
correctly identifying what object(s) are in the scene. Pose 
estimation refers to determining the six degrees of 
freedom for pose of the identified objects. This includes 
complete position and orientation data. In the first round 
there will be one object on a table. The next three rounds 
get progressively harder by adding more objects to the 
world scene. The top three teams will then compete by 
running their system using a real robot that grasps the 
objects. 
 
Some other challenges include: occlusion, dealing with 
objects that are not fully visible block; similar texture, 
classifying objects in a way that the algorithm will not be 
confuse with alike objects; noise, filtering data that is 
unimportant so that accuracies are improved; and object 
movement, tracking object as time varies because the 
objects are not stationary.  
 
Before proceeding into further discussion of our system, 
it is worth showing imagery related to our final goal. In 
the following Figure 2, an object that we need to classify 
is placed on top of a turntable. We must extract the 
object, classify it, and determine its position and 
orientation. 

 
Figure 2 A representative samples of what one of the multi-
object data sets will look like. 

 
The team took an iterative approach to finding the best 
solution to this problem. A selection of algorithms were 
chosen and tested with comparative results. Ultimately 
we determined our best strategy to meet the objective of 
the competition: 
 
Training  - Learn new objects into the system  

• Features Extraction - Using SIFT  
• Model Alignment - Using MROL  

Detection - Recognizing and determining object pose 
• Table Removal using Singular Value 

Decomposition and Random Sample Consensus 
• Feature detection using SIFT which matches the 

current scene model with models in our database 
• Pose Estimation using of MROL 

 
Individual interest varies from mild curiosity in computer 
vision to pursuit of a graduate degree in this area. General 
algorithm development and project management is 
applicable to all group members for continuing education 
and for corporate employment. 
 
 
 
Competition Requirements 
 
A set of rules can be found on the official Solution In 
Perception web page [3]. First, we summarize these rules 
and then go into detailed customer requirements and 
engineering specifications. 
 
The setting of the competition is to imitate an office 
setting with indoor fluorescent light and object that is 
located 0.6 to 1.2 meter away. For the competition, the 
Willow Garage PR-2, see Figure 3,will be stationary but 
away from the rotating table with the distances mention 
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above. The algorithm is to be complied in C++ or python 
so that it is compatible with the robot’s operating system 
(Robotics Operating System). Specifications include dual 
quad-core Xeons for a total of twenty threads, 
GNU/Linux with the Robotic Operating System libraries 
installed, along with numerous other sensors and 
manipulators a more detailed list can be found here [1]. 
The computational hardware used is designed to the 
purpose of this project: recognition of objects. Therefore, 
the hardware and the setup is optimized for the computing 
and running of such task. 
 

 
Figure 3 The Willow Garage PR-2 robot 

Object recognition is done with a library of 50 known 
objects. Training data for 35 of these is available online. 
The data includes color imagery, point clouds, and 
coordinate transforms necessary for generating models 
for use. Classification requires learning information about 
specific features between models that help distinguish 
between different objects. Note that “learning” is implied 
in the machine learning sense -- the system learns what an 
object is, by running algorithms that extract features from 
the data set. The values returned are important from a 
statistical sense but essentially come down to a set of 
numbers. 

 
Figure 4 The 35 objects from the released data set. We have 
been given training data for all of these objects. These data 

sets contain each of the objects on a turn table and we are 
given a pointcloud, imagery, and ground truth pose to train 
on.  

 
Additionally, 15 new objects will be added at the time of 
the contest. The system must provide a way for the judges 
to train the robot to recognize the new objects. Potential 
challenges include merging this new data into our 
classification system. New data sets are used to determine 
if the learning methods are accurate. 
 
The competition takes place at the ICRA in Shanghai, 
China on May 10th and 11th 2011. While we ultimately 
aren’t able to go to the conference, we will be able to 
compete. A colleague from CSIRO (Commonwealth 
Scientific and Industrial Research Organization) in 
Australia will be at the event and will be presenting on 
our behalf. Our code was officially submitted and 
accepted on May 1st. It has been stated that there are six 
other teams competing aside us. 
 
 
Customer Requirements 
 
For any products in the market there is always a product 
life cycle that concerns the useful period time a product 
can be used. More importantly, this cycle maps out 
customer groups where surveys can be used to obtain 
customers’ requirements. One of the customer groups for 
this product is the competition judge, and their 
requirement is already laid out in the competition 
guidelines. The second group of customer is the end user, 
who will try this product without prior knowledge of 
computer programming. It is assumed that the robot will 
have to be easy to use. “Easy to use” is interpreted as 
simple buttons that serve obvious functions. These 
customer requirements, technical specifications and target 
settings are shown in the table below.  
 
 

Customer 
Requirements 

Technical 
Specs 

Target Setting 

Learn new 
objects 

Is there a 
function to add 
new objects 

Yes (and it 
shouldn’t greatly 
affect runtime) 

Identify 
Objects 

Classification 
accuracy 

Maximize the 
percentage 
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Find position 
of the object 

Positional 
Error 
Tolerance 

+/- 2 Centimeter 

Fast 
processing 
speed 

Processing 
Time 

Less than 15 
seconds 

Works with 
necessary 
operating 
system 

Robot’s 
operating 
system. 
 
Programming 
language. 

Robotic Operating 
System (ROS). 
 
 
Language: C++ or 
Python 

The system 
should be easy 
to use 
 

Number of 
steps to train 
new object. 
 
Number of 
steps to delete 
old object. 
 
Number of 
step to run 
recognition 
program. 

A button to learn. 
 
 
 
A button to delete. 
 
 
 
A button to 
recognize and pose 
estimate. 

Low financial 
and 
computational 
cost  

Cost of 
equipment 
(hardware) 
 
 
Computational 
cost of 
algorithms 

Lower in cost 
compared to 
stereoscopy 
 
 
Minimize 
computational cost 
while retaining 
classification and 
pose fidelity 

Figure 5 Customer Requirements and Technical 
Specification. 

 
Learn new objects 
The computer will have to learn new objects and be able 
to recognized and identify them in the future. There 
millions of objects in this world and pre-loading all of 
them into the robot would be an expensive and futile 
exercise in computation and storage optimization. 
Therefore an alternative solution is used; an algorithm 

that will allow the robot to learn and recognize a new 
object. The robot will essentially scan the object on a flat 
table in a room setting. It will then store these new 
objects for future identification. Also, it will have to store 
this information in a compact size so that the memory 
footprint is minimized, effectively increasing the amount 
of objects it can recognize. 
 
Recognition of the object  
Recognition of the object should be accurate such that the 
object is classified with a set amount of certainty. Ideally, 
the object must be identify with near 100% accuracy. A 
central objective of this project is for the robot to find the 
specified object and identify it, otherwise the algorithm is 
effectively unimplemented. 
 
Position of the object 
The position of the object relative to a world coordinate 
frame must also accurate, with an error of tolerance of +/- 
2 centimeter. This is another objective the project must 
satisfied as per point distribution in the competition rules.  
 
Processing Speed 
The algorithm will respond in the least amount of time 
possible. Ideally, it should response within 15 seconds. 
Anymore time and the robot should automatically end the 
iteration and output an error message, and assume the 
algorithm should be restarted. 
 
Compatible 
The algorithm is written in a language that is compatible 
with the operating system. It is our prime concern that the 
algorithm is fully compatibility with ROS. The 
programming language used should be C++ or Python. 
 
Easy to Operate 
Due to the numerous times the program has to run, the 
time and steps it takes to operate the algorithm inside the 
robot should be simple and fast. Therefore, the number of 
steps the robot takes to learn new object is minimized and 
the number of steps to run the recognition program is 
minimized. Ideally there should be a command to learn, 
and a command to recognize object. 
 
Computational complexity 
In this aspect, we want to optimize functionality of this 
computational algorithm without increasing cost. In other 
words, a program with more or better functions often 
come with cost of longer run time. Therefore, it is 
essential in finding a balance in between them.   
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Problems and Challenges  
 
Unique features of object 
Our classification method recognize the object according 
to it’s characteristics. It is direct, straightforward to 
distinguish between a circular and rectangular object but 
it is more difficult to distinguish between a set of 
cylindrical object with different dimension. Therefore, 
unique features over a set of similar objects must be 
found in order to get an accurate classification.   
 
Occlusion 
Obscured objects will need to be addressed in order to be 
awarded the most possible points in the competition.  On 
primary examination, some sort of data extrapolation 
would be a method to fill the data set to be able to use the 
same algorithm method as before.  This could lead to 
erroneous data that is most likely misleading, a preferable 
method would be to simply preform a modified sampling, 
and have a weighting parameter to determine the degree 
of confidence that a partial data set provides.  Of course 
programming ease and solution accuracy could lead to a 
different solution entirely. 
 
Noise 
Misleading data that is captured from varying lighting 
and changing background, which affects the results of the 
output.  This input data will have to be treated so that it 
does not carry the error to the result. This process is 
known as filtering, where some of the data is minimized 
and some of the data are amplified in the effort to 
improve accuracy.  
 
 
Potential and Planned Approaches 
 
For our competition, there is a hierarchy of potential 
directions. On a high level we can tend towards a two 
dimensional or three dimensional pipeline while working 
with data, as described in the next section. On a lower 
level, we must consider a variety of different approaches 
for each sub-section of our project, which are 
Segmentation, Pose Estimation, Classification, and 
Tracking. In the following two sections, we discuss some 
potential solutions as well as our current planned path. 
 
High Level 
On a high level, we much choose between two-
dimensional and three dimensional data pipelines. A two 
dimensional pipeline implies that we are working directly 

with images while a three dimensional pipeline means we 
are using spatial “pointcloud” data. A pointcloud is a 
datatype that stores the three dimensional location and 
color of all points in an environment. By working with 
images, we can leverage many computer vision tools such 
as OpenCV (Open Computer Vision library), NumPy 
(Numerical/Matrix Library) and SciPy (Scientific+Vision 
Library). Because we have these tools available we can 
prototype different methods faster, without having to 
implement each algorithm directly. Because the idea of 
using three-dimensional data is relatively newer there are 
fewer tools available. 
 
Ultimately, we chose to take a hybrid approach that uses 
two-dimensional techniques for classification and three-
dimensional techniques for pose estimation. 
 
Low Level 
Segmentation is the process of separating image pixels 
into different groups. The objective is obtaining a 
representative output for next step: classification. We 
have a wide range of choice in segmentation method: 
histogram-based, part models, active-contour models, and 
others. We started by tending towards region-based 
algorithms because of their tendency to keep neighboring 
pixels together. Later we show that other methods such as 
histogram-based processes can have problems where 
different areas of an image are segmented as one area. 
Ultimately we employ a table-based segmentation method 
which works predominately on three dimensional data. 
 
Pose estimation is the process of determining the 
position and orientation of an object.  Our original 
approach involved an iterative method that starts by 
matching primitive shapes to determine pose. After 
classification, a more complicated model would be used 
to refine the pose to increase robustness. Ultimately only 
a single iteration was performed using MROL due to 
computational complexity. It was not possible to run this 
multiple times within time constraints.  
 
The crux of the competition lies in the actual 
classification. The ability to accurately define an object 
requires detecting notable features and comparing them to 
our list of potential objects. Recent work shows that 
matching specified target objects in a scene can be 
computed with high accuracy using SIFT, SURF, and 
other feature detection techniques [4]. Using image-based 
techniques, we must be able to match what is in our scene 
with a similar representation of known models in our 
dataset. We create a database that stores information 
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about each of our objects with corresponding image and 
feature data for all angles. We are able to attempt to 
match our current segmented object with the potential 
objects in the database. Approaches using ensemble 
classifiers such as random forests or bagged decision 
trees were investigated but not necessary in the end. 
Some other methods of accomplishing classification 
include using parts models, three dimensional model-
matching, grammar models, and simple feature 
extraction. A Scale-Invariant Feature Transform is used 
in our final system. 
 
Tracking is used to improve the accuracy of position data 
over a period of time. The position data measured from 
the Kinect carry noises, which gives an uncertainty of 
positions. Using a tracking method, the noisy 
measurement is recorded and calibrated to a new position, 
which will be closer to the actual position. Tracking is 
useful in that it allows the robot to know where the object 
is at all times. There are two approaches this solution, 
linear and non-linear. A Kalman filter is a linear approach 
where it assumes that the noise variation is under the 
assumption of Gaussians distribution. This is favorable 
because any system that can be simplified to a linear 
solution is much simpler to work with.  The non-linear 
approach involves the uses of particle filter which provide 
better accuracy but much more complicated since it deals 
with random noise variations. Ultimately the use of 
Kalman filter is preferred because the accuracy between a 
linear approach and non-learn approach is relatively 
small. One advantages of using a Kalman filter is that it 
only requires two steps to do tracking: prediction and 
update. The system measures the position of the object, 
predicts the path it will travel, and measures the position 
again. This process repeats and becomes more accurate as 
the time step decreases. Unfortunately, due to changes in 
competition rules, this work was not included in the final 
system. Regardless, we show results from our preliminary 
implementation. 
 
 
Detailed Design 
 
As previously discussed, our software is divided by two 
major components: Training and Detection. Each of these 
plays a very different role in the whole picture but works 
using mostly the same algorithms. In this section we 
discuss our final approaches in detail and also talk about 
system-level and other related challenges inherent in our 
design. 
 

Training: 
The training phase is split into three main sections: 
background removal, texture extraction, and model 
generation. The underlying premise of this phase is that 
we are trying to store a model of all of our 35 objects. We 
want to be able to model each of the objects in both two 
dimensional and three dimensional representations. Both 
geometry and texture are important for our detection 
algorithms, so we must extract them from the input data. 
The input is our initial data set which includes a colored 
pointcloud, a two dimensional image, and the ground 
truth pose. The output is a numerical description of the 
texture and a complete pointcloud of our object. 
 

 
Figure 6 Algorithm pipeline, for use with training new 
objects. 

 

 
Background removal: 
In order to classify each of the objects in a data set, we 
must first detect which parts of the scene contain an 
object and which are parts of the background. Because we 
are given the ground truth position and orientation of each 
object in the training data we can easily eliminate the 
background. Mathematically, this results in transforming 
all of the points in the scene by the inverse of the ground 
truth pose. After this transformation the object is at zero 
position [xyz=0,0,0] and is orientated directly upwards. 
We simply use a box filter to isolate the object, which 
eliminates all points outside of a specified bound. In our 
case we used bounds reflecting the largest object size: 
x=+/- 0.15 m, y=+/- 0.15 m, z=+0.3 m. 
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Figure 7 A single projected frame from a data set 

 
See the section on coordinate transformations to get a 
better understanding of how this procedure works.  
 
 
Texture Extraction: 
In our case, texture is defined as structured change of 
color in an image. We want to be able to compare the 
texture of an object in the scene with all of the textures in 
our database in order to perform object classification. Our 
biggest problem is that we will see objects at different 
positions in the scene and at different orientations. Using 
basic image recognition techniques such as template 
matching, if we try to match two objects at the same 
orientation, if one is farther back in the scene than the 
other then they will appear as two distinct objects. Even if 
we extracted an object’s color image at multiple scales we 
would still have a problem matching at different 
orientations. The input data is spaced by 10 degree 
rotations, so we do not have enough information to 
generate color at all angles. 
 
Over the past decade David Lowe’s work on the SIFT  [4] 
has garnered a lot of attention for it’s ability to do image 
matching. It detects salient features in an image based on 
grayscale texture. The following figure shows how a stop 
sign, which can be considered a complex pattern, is 
matched between two images even though the lighting 
and angle are not exactly the same.  

 
Figure 8 SIFT matching demoed on a common stop sign. 

 
 
SIFT works by finding the maxima and minima on a 
Difference of Gaussians [4]. DoG is a method where 
multiple versions of an image that are blurred and 
sampled at different resolutions are convolved with each 
other. By only looking at the extrema the most distinct 
sections are kept. This algorithm is also rotationally 
invariant due to the way the descriptors are stored. There 
are 128 numerical values stored that represent cues 
surrounding the feature. These are stored starting at the 
dominant orientation surrounding the point and traverse 
clockwise. This generalizes the descriptor so that it can 
work at varying orientations 

 
Figure 9 SIFT feature extraction pipeline 

 

There is an efficient C++ implementation provided by the 
author which has been used. Note, however, that the 
matching algorithm has been implemented by us. This is 
discussed in the feature matching part in Detection. The 
previous picture depicts the process of taking the 
extracted image, finding the SIFT descriptors (the blue 
circles), and storing them in a database. All of the keys 
from each viewpoint in the data set are merged together 
into one file per object.  
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Model Generation 
Each frame from a data set represents a different 
viewpoint of the object. In order to generate a complete 
model we must merge the pointclouds together. Given 
that we have the ground truth pose, in theory this 
shouldn’t be a problem. However, through experience we 
found that the models did not line up particularly well. 
The following image shows the resulting pointcloud after 
simply merging all of the pointclouds together. There is a 
lot of noise, which would throw our pose estimation 
results off. 

 
Figure 10 MROL model generation and refinement. 

 
To compensate for this noise we use MROL, developed 
by colleagues Julian Ryde and Nick Hillier [5]. This is six 
degree of freedom (three position, three orientation) 
localization method using a probabilistic multi-resolution 
approach with occupied voxel lists. Note that voxels are 
the three-dimensional equivalent of pixels. They can 
decrease the amount of space necessary for storing sets of 
points by a large amount while only slightly decreasing 
the accuracy. 
 
As shown in the image, just using the matching algorithm 
explicitly does not provide great results. It does a better 
job than simply merging the points together but there is 
still significant noise, especially in the Y direction. By 
selectively adding new pointclouds we were able to 
achieve much more accurate results. This works by 
calculating the deviation between the centroid of a new 
aligned pointcloud and the centroid of the combined 
pointcloud. If the deviation is too large (greater than 0.5 
cm) then the object is not merged. A similar procedure is 
used for rotation. Figure 11 shows the output of the first 
10 objects from the data sets. 
 

 

 
Figure 11 Objects 1-10 out of the 35 objects in the data sets 

 
 
Detection 
The underlying algorithms in the detection phase are the 
same as for training, but the way they are used is 
different. Instead of generating new models, we are able 
to classify and determine the pose of objects in a scene. 
Aside from SIFT and MROL we have developed a 
method for eliminating the background by determining 
the location and parameters of the surface that the objects 
are stationed on. This algorithm has gone through several 
different iterations. The process is documented in more 
detail in the Segmentation section later.  

 
Figure 12 Detection pipeline for classifying object(s) within 
a scene 

 
Table removal 
It has been documented in the competition rules that the 
objects will be located on a flat surface. From all of the 
example data sets we see that this surface is the dominant 
plane in the scene. It was hypothesized that if we can 
identify and mathematically define the table then we can 
remove it from our scene. 
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Figure 13 Input image 

 
Figure 14 Segmented image used as input in SIFT 

 
 
In order to mathematically model the table we must be 
able to locate it in the scene. A plane is defined by 
Ax+By+Cz=D where x, y, and z are any points in a scene 
and A, B, and C are defined by the surface normals. D is 
the intercept in our case will be set to zero. Given our 
three dimensional pointcloud we are able to estimate the 
surface normals for each point. This is calculated using 
Singular Value Decomposition (SVD) using a set of 
neighboring samples. SVD outputs a factorized set of 
matrices that split an input matrix into two orthogonal 
matrices and a scalar matrix. Importantly, the second 
orthogonal matrix can be used to obtain the surface 
normals for each patch. This is discussed in greater detail 
in the Segmentation section. In Figure 14 the color blue 
represents areas that have been removed, yellow is the 
isolated object, white is area without valid depth data, and 
red is data above the table but outside of our bounds. 
 
Texture-based classification 
Once the foreground has been extracted we must 
determine the number of objects in the scene and each 
objects’ identity. Similar to the training phase, we use 

SIFT to extract texture descriptors from the scene. These 
are compared to the corresponding descriptors for all of 
the trained models. SIFT matching is performed by 
calculating the Euclidean distance between the 
descriptors in two models, 
 

! 

D = sum((A " B)2) ,  
 

where A is the scene descriptor vector, B is a model 
vector, and D is the distance. The problem is that there 
are 128 numbers per descriptor and there are 
approximately 1000 descriptors per trained model. This 
takes a long time to compute! 
 
The Lowe paper [4] suggests an alternative metric rather 
than Euclidian distance which is much more 
computationally efficient but slightly less accurate. 
Essentially, instead of taking the sum of the squared 
differences, the angle between the vectors comprising the 
128 numbers can be calculated. This requires taking the 
inverse cosine of the dot product of the two vectors, 
 

! 

D = cos"1(A • B) . 
 
 While an open source method for doing this is available 
online, it is not computationally efficient. Running this 
code in our system resulted in run times of over 15 
seconds just for the detection phase! We implemented 
this algorithm in Python and vectorized it using the 
numerical library Numpy for far superior performance. 
We were able to get approximately 1.8x the performance. 

 
Figure 15 SIFT feature matching for “Odwalla” juice 
bottle 

 
For single object detection, Maximum Likelihood 
Estimation is used to calculate the most likely object 
based on the SIFT features. This is mathematically 
described as: 
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! 

"estimate = argmax
i

L(X |" i)  

 
where 

! 

" i  is an individual model description, X is the 
current scene description, and L denotes likelihood. 
 
The value of the most likely solution is used as the basis 
for multi-object detection. Currently a threshold is used, 
so if any object is at least 70% as likely as the most likely 
solution then it is added as a potential object. If more time 
was available, parameter estimation techniques could be 
used to learn what percentage is optimal. This requires 
taking a large number of data sets, determining the 
minimum likelihood for successfully classifying all 
objects in the scene, and determining what threshold 
minimizes the error in classification.  
 
Pose Estimation 
The most likely models are fed into the MROL technique 
that has been previously discussed. Using our 
classification technique, we calculate an estimated 
centroid for the object based on the midpoint of the 
descriptor locations. MROL uses a conjugate gradient 
method to attempt to align the current scene with the 
stored models. The change in position between our 
aligned position and the initial guess is used to determine 
the pose in sensor coordinates. Figure 16 shows an 
example of an “Odwalla” juice bottle found in a scene 
and compares it to a model from the trainer. 
 

 
Figure 16 MROL to SIFT matching for classification of 
an object 

 
The scene pointcloud is much more sparse and thus it can 
be hard to obtain an accurate alignment. Figure 17 shows 
how the algorithm does not always find a good match. 
There are additional problems when the scene is entirely 
flat. Sufficient geometric texture is required to accurately 
align the model. 

 
Figure 17 Model alignment. 

 
Supplemental Challenges 
Aside from the primary classification and pose estimation 
techniques, several other areas must also be accounted 
for. In order to actually use the aforementioned 
algorithms there must be a way to interface with the 
Robotics platform. In order to simplify prototyping, there 
must also be a way of extracting information from the 
robotics platform to use in programs such as Matlab. 
Additionally, many of the data interfaces that we’re using 
are in different coordinate systems or use different 
notation. Finally, we discuss tracking, an area that 
received significant attention until a change in the 
competition rules mid-way through the semester. 
 
System 
All of the code for the final competition runs in Linux 
using the Robot Operating System (ROS). In order to 
compete we must be able to interface our algorithms with 
this software and output our results to Comma Separated 
Variable (CSV) text files. This required spending a lot of 
time learning how to take the data they give us 
(pointclouds, images, pose data) and be able to actually 
use it. There are hundreds of lines of “wrapper” code, 
which takes our algorithm and allow it to work as a 
complete system. The following figure shows a high level 
overview: we must input the ROS data into our training 
and detector code and output the final results to a separate 
file. 
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Figure 18 High level system pipeline. 

 
Additional work was done to allow us to use the data 
outside of the ROS architecture. A batch convertor was 
created which inputs the ROS data and outputs the 
pointclouds, images, and poses into multiple formats that 
we can use directly with Python and Matlab. This process 
is shown in the following figure. 

 
Figure 19 Written utilities for data extraction to enable 

algorithm simplification 

 
 
Coordinate Systems: 
There are 2 primary coordinate systems: the Kinect frame 
and the object frame. It is possible to switch between each 
of the frames using a set of transformations. For our 
results, it has been determined that the position of the 
object should be calculated relative to the Kinect frame. 
For the final round of competition, it is necessary to find 
the exact object pose so that a robot can uses its arm to 
move the object. The transformation equation is shown 
below along with Figure 20 to demonstrate the 
relationship between the two frames. T is the 
transformation from the Kinect to the global center 
position of the object and R is the relative transformation 
between frames. While the object rotates on the turntable 
in each data set the T matrix stays static and the R matrix 
changes every frame to reflect change about the Z axis. 
 

Postruth = inv(T*R)*Poskinect 

 
Figure 20 Relationship between Kinect frame and 

object frame 

 
Additional coordinate problems arose from the use of 
different coordinate representations. The rotation in 
MROL uses a vector of length 3 with axis-angle notation. 
The input into our system is in Rodrigues notation and the 
output is a 4x4 transformation matrix. The lack of 
documentation regarding which notation was being used 
at each step caused trouble. For example, it was assumed 
that MROL and the input were using the same notation 
because they are both vectors of length 3. We later found 
this not to be true. 
 
Tracking: 
The competition is in its first year, so it took a couple 
months before the rules were completely finalized. 
Originally the robot was supposed to move around a 
stationary table that had a set of objects. However due to 
a sudden change in rules, the new set up uses a stationary 
robot with a table that rotates the objects. In the original 
setup we anticipated the need to use tracking techniques 
to refine our pose estimation. Significant work was put 
into this area, but ultimately tracking lost its important 
due to a change in rules. Nevertheless, Fig. 21 below 
shows a graph using our implementation of a Kalman 
Filter for displacement versus time in X, Y, and Z 
directions. A Kalman filter assumes there is noise in our 
measurements and improves accuracy of the expected 
positions. It assumes there is a “hidden” true value that is 
being corrupted by the sensor. 

 

 
Figure 21 Displacement as a function of time in x,y,z 
coordinates 
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Iterative Design Approach 
The problems that we are trying to work with cannot be 
considered “solved.” This area of computer vision is 
being widely researched because the current state of the 
art is not adequate for real-time applications such as in 
robotics. While there are some directions for object 
classification and pose estimation that we have looked 
towards, there is no known “best” solution. As such, this 
project required a lot of trial and error. We used an 
iterative approach with each section until we were 
satisfied. 
 
Additionally, In efforts to investigate a larger variety of 
algorithms, we decided to have two team members 
prototype methods exclusively in Matlab. This leveraged 
prior experience that these people had doing engineering 
simulation without requiring them to spend inordinate 
amounts of time learning a more “complete” 
programming language.  
 
Segmenting the object(s) from the background imagery is 
a difficult task because of the complex textures that each 
object has. We went through three distinct methods of 
segmentation including two image-based methods and 
one geometric method using 3D pointclouds. In the end, 
our final table segmentation technique worked the best. In 
the following sections we detail each of the methods and 
explain (1) why we investigated the particular technique 
and (2) the final results and why we either used it or tried 
something different. 
 
Method 1: K-Means 
The algorithm we initially attempted was the K-Means 
method of segmentation. It is an efficient method for 
separating raw data into different groups according to 
similarity [6]. Since the intensity of pixels in an object is 
close, we considered this method to be useful for 
segmentation. Additional reasons for choosing K-Means 
were its simplicity and computational cost savings. In 
short, the procedure for K-Means is as follow: 
 
 
K-Means Algorithm: 
 
1.) Initially the data is randomly selected and the centroid 
is calculated. (data with 2 properties gives a two 
dimensional centroid and data with 3 properties gives a 
three dimensional centroid) 
 

2.) The number of centroid returned depends on the 
number of group inputs. 
 
3.) The distance between the centroid and each data point 
within a group is calculated. If the distance exceeds the 
tolerance, it will be excluded from the group. 
 
4.) The procedure is repeated as a new centroid is 
calculated. The iterations will be stop if most of the data 
is assigned to a group. 

 
 

Testing  
We created our program based on the procedure 
described above in Matlab. After several modifications 
and improvements of the program, prototyping results can 
be seen in Figure 22. 
 
Simulation Results 

 
Figure 22 k-Means simulation results 

 
The simulation results were not expected and do not 
satisfy our requirements for segmentation. Figure 22a is 
the original input depth image and Fig. 22b is the output 
image of K-means method. An ideal output should be 
similar to Fig. 22c so that the shape of a bowl is clearly 
extracted from the background. However, the output from 
K-means extracted the shape of the bowl with some part 
of the table. We believe that it is because the pixel in the 
lower part of the table share some similarity with the 
bowl. As a result, we looked at alternative methods to 
obtain better results 
 
Method 2: Watershed Algorithm 
Next we tried a watershed segmentation algorithm. Since 
the image needed to be divided into different segments 
instead of simply separating it from the background, this 
algorithm is more suitable than the K-Means algorithm. 
However, the procedure for the watershed algorithm is 
more complex than previous algorithms because it 
requires additional preconditioning of the input image [7]. 
The following is the procedure for watershed 
segmentation: 
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Watershed Algorithm:  
 
1.) The input image (either depth or RGB image) is 
converted into a binary image. A binary image is an 
image format with only black and white pixels. 
 
2.) The transformation mentioned above is often achieved 
by using threshold segmentation. 
 
3.) A distance transform of the image is the next step. 
This transformation labels each pixel with the distance 
from the nearest non-zero pixel. 
 
4.) Several local minimum points are chosen based on 
grayscale intensity. 
 
5.) A “flooding” process starts from those minimum 
points by repeatedly increasing the intensity of the 
neighboring groups of pixels. During this process, a 
segmented line is formed by any pixels that are merged 
together. 
 
6.) This line is used to construct the final segmentation. 

 
Testing 
We used Matlab’s built-in watershed function [8] for 
testing. However, a tailored algorithm was written for the 
distance and binary transforms. The result can be seen in 
Figure 23. 
 
Simulation Results 

 
Figure 23 (a) RGB (b) Binary (c) Segmented 

Image 

From Fig 23, we can see that the bowl is clearly 
distinguished from the background. Therefore, it is 
considered successful. However, with the multiple objects 
seen in Figure 24 in can be shown that the result is 
slightly less clear than the single object seen in Figure 23. 
The overall results were not acceptable since different 
objects can not be classified. In addition, it was 
discovered that the segmented result of watershed 
algorithm depends heavily on the binary image. In other 
words, the binary transform must be reliable to ensure the 
quality of the segmented results. 

   

 

 
Figure 24 Multi-object scene (a) RGB (b) Binary        
(c) Segmented Image  

 
Method 3: Table removal 
 
The watershed segmentation has superior performance 
over k-Means, but ultimately doesn’t suit our needs. We 
later realized that if the table is first extracted from the 
image then we will be able to easily extract the object. 
 
The table extraction can be done using Random Sample 
Consensus (RANSAC) where we input points that have 
normal vectors pointing upwards I the scene. The 
normal’s can be calculated from the depth image by using 
Singular Value Decomposition (SVD). As stated before, 
RANSAC can be used to compute the parameters of a 
mathematical model to the data [9]. The actual model in 
our case is generated using Ordinary Least Squares (OLS) 
by finding the minimum error about a linear plane. The 
advantage to using RANSAC is that it will find the 
dominant plane in the entire data set. If OLS was used on 
the entire pointcloud then the result would be very noisy. 
The following procedure details the RANSAC method:  
 
 
RANSAC Algorithm 
 
1.) Random data points are selected. 
 
2.) The parameters of a mathematical model (such as a 
plane) are estimated based on the selected random data 
using Ordinary Least Squares. Specifically a three 
dimensional plane was used as a model. 
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3.) Additional random data points are selected. Then the 
difference between the current math model and the new 
data points are computed. 
 
4.) Only the data points within tolerance will be included 
and a new math model will be constructed with the 
additional data points. 
 
5.) The procedure iterates until the math model can 
represent a defined proportion of the data. 
 
Since the table is a flat surface, all the normal vectors of it 
must point in a similar direction. Therefore, data points 
with distance close to a plane represent the table in an 
image. 
 
 
Testing 
We implemented the above method for RANSAC in 
Matlab. At first, the run time was too slow for final 
implementation. By changing the code to utilize vector 
and matrix based math, the run time was greatly reduced. 
 
 
Simulation Results 

 
Figure 25 Data points in three-dimensional space and 
the found plane model  

 
In Fig. 25, the red dots represent the normal vectors of a 
surface in the image. It is obvious that the set of red dots 
in the lower region represents the normal vector of the 
table. As a result, a linear plane model is produced around 
that region by using our implemented RANSAC 
algorithm. We were able to extract the table from an 
image based on these computed parameters (coefficients 
of a linear plane equation). Figure 26 represents the visual 
output of the modeled table. The yellow colored located 
in the center is the found table. 

 
Figure 26 Found table in training data 

 
 
 
System Results  
 
While we will not know the end results until the 
competition on May 10th, we have done preliminary 
testing on data sets provided by Willow Garage. As a 
whole, the results are higher than expected. 
 
On the high side, the accuracy of the classification is up 
to 100% for most of the object on training data. Figure 27 
displays these result for 35 objects. From this figure, there 
are 15 items with an accuracy of 100%. Twelve items 
have 80% accuracy and there are 27 out of 35 items have 
accuracy higher than 80%. The average accuracy is 82%. 
It should be noted, however, that this is all calculated 
based on the same data sets that we trained the objects. 
This means that on testing data we most likely won’t get 
this high. This is because the features we’re detecting 
from these datasets are the exact same ones that are in our 
SIFT database. In reality the features will be slight 
variations on what we current have stored. 

 
Figure 27 Classification Accuracy of 35 Objects  

 
In regards to pose estimation, based on a small sampling 
of data sets the position accuracy is roughly 2cm to 5cm. 
In the competition anything below 2 cm gets full credit 
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and anything between 2cm and 5 cm receives partial 
credit. The rotation accuracy is harder to quantify. It has 
not be stated exactly how rotational accuracy will be 
determined. Because of different coordinate systems and 
way to measure it, we cannot determine how much credit 
we will likely receive. Visually, it looks like our 
orientation is in range of acceptable values (there is 
partial credit up to 90 degrees off axis). In general, our 
orientation is off by +/- 45 degrees. The running time of 
our system varies but is approximately 15 seconds on 
average. According to the judges, as long as the system 
run time is not significantly more than 15 seconds then 
full credit will be received. 
 
However, our system does have significant problems in 
some areas. The classification accuracy for scenes with 
multiple objects is bad as 5% sometimes. Sometimes this 
is because there are objects on the table that are never 
trained on our system; these are here to trick us. There are 
other problems when the Kinect is oriented on its side, as 
shown in Figure 28. We believe that this has to do with 
the surface normal calculation done in the object 
detection phase.  
 

 
Figure 28 Detection on a "sideways" data set 

 
In both single and multi-object scenes, if our detection 
method fails then the classification and pose are usually 
completely wrong.  
 
Conclusion and Future Work  
 
The product has achieved a complete system capable of 
our the main objective: object recognition and pose 
estimation. While there is significant variation in result 
performance, most of the requirements mentioned before 
were met or below target. Since most of the material in 

this project is new to group members, we learned that 
testing is necessary to evaluate results of any conceptual 
approach. This led to an iterative approach which allows 
you to try many ideas but ultimately increases the 
development time.  
 
Going forward changes to the system pipeline will have 
to be made to increase algorithm performance and to 
provide a set of filtering schemes to increase system 
performance. 
 
There are several high level future improvements that 
may help obtain better results. Firstly, we can improve the 
poor classification accuracy of object in multi object 
scenes by using an alternative classifier pipeline. This 
new set of classifiers will combine additional method to 
avoid mismatching in order to improve overall accuracy. 
Additionally, we can decrease the run time of our system 
by migrating code to multi-threading and by 
incorporating more code optimizations. This can be done 
by either programming for multiple CPU cores and or 
massive parallel processing on a GPU. Since a GPU has 
many more cores than a CPU it can spread the 
computation between its cores to get a faster 
performance.  
 
While the final results are not yet know, the experience 
gained by working on this project has been instrumental 
in increasing abstract problem solving skills, written 
ability, and analytical thinking abilities. 
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