
  

 

Abstract—This paper compares a broad cross-section of 

range sensing technologies for underground void modeling. In 

this family of applications, a tunnel environment is 

incrementally mapped with range sensors from a mobile robot 

to recover scene geometry. Distinguishing contributions of this 

work include an unprecedented number of configurations 

evaluated utilizing common methodology and metrics as well as 

a significant in situ environmental component lacking in prior 

characterization work. Sensors are experimentally compared 

against both an ideal geometric target and in example void 

environments such as a mine and underground tunnel. Three 

natural groupings of sensors were identified from these results 

and performances were found to be strongly cost-correlated. 

While the results presented are specific to the experimental 

configurations presented, the generality of tunnel environments 

and the metrics of reconstruction are extensible to a spectrum 

of outdoor and surface applications. 

I. INTRODUCTION 

ANGE sensing applications such as mapping, 

safeguarding and measurement are ubiquitous in 

robotics. Selection of sensors for these tasks is often made 

with complex considerations. However, comparative data 

between sensor models of the same class - and between 

differing classes - does not exist in any comprehensive form. 

Factory-listed accuracy values are established under ideal 

settings with ideal targets and methodology that are 

incomparable with other sensor calibrations. Moreover, the 

specifics of configuration and actuation also strongly affect 

the density and quality of data [1], [2]; configurations most 

useful in field robotics are often neglected in factory testing. 

Comparative knowledge of sensor quality is particularly 

important when range sensors are used to create models for 

survey, digitization or surface analysis. Defining examples 

in this category include void mapping, mine-accident/event 

survey, and structural evaluation, where model accuracy 

directly governs issues of safety and culpability [3], [4]. The 

quality of reconstructed models is top priority even at the 
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expense of system robustness or acquisition time. While 

mobile robots are used to generate void models, use of a 

stop-and-scan is acceptable.  Features and statistics of the 

model - often volume and structural stability cues - are 

determined almost exclusively using post processing 

techniques. 

The research described in this paper characterizes a broad 

spectrum of range sensors (Fig. 1) in the context of 

underground void modeling. Experimentation includes both 

a laboratory calibration utilizing ideal targets and a holistic 

comparison of models generated in representative 

underground environments. Both these comparisons utilize a 

common, repeatable methodology across all sensors and 

metrics of evaluation (sampling accuracy and density) that 

are inspired by the aforementioned real-world applications. 

It is noted that only the quality of geometric reconstruction 

from sensor data is evaluated. Cost, mass, energetics and 

field robustness are specifically not considered, as 

addressing the full gamut of issues would lead to 

intractability of experimentation. Moreover, factory values 

for these parameters are generally sufficient for decision 

making.   

Foundations for this work were motivated by sensor 

selection in defense tunnel mapping application. While the 

primary results of this work are only strictly valid for the 

experimental configurations presented, the authors intend 

the work to contribute to shrewd sensor selection for a range 

of analogous environments and applications. The ideal 

component of the characterization is similar to much of the 

prior work in this area, with the exception that the current 

research addresses a much larger experimental set and is 

intended to be a broad basis for environment-neutral 

comparison. Generalizations such as intersections and 

corridors are extensible to most underground mines, caves 

and tunnels. Lastly, the emphasis on natural rocky materials 

is appropriate for many surface and planetary applications. 

II. PRIOR WORK 

A rich body of work exists in range sensor 

characterization for the purpose of mobile robot mapping. 

The vast majority of prior work falls in the category of 

exhaustive single-sensor analysis, which this paper does not 

replicate in favor of a broader, holistic approach. The 

authors are not aware of any comparable research that has 

approached cross-sensor evaluation with the mix of 

methodology, scope and modeling relevance described in 
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this paper. 

Prior LIDAR characterization work is primarily either 

single-sensor physical analysis [5], [6], [7] or comparative 

evaluation between two sensors of the same class, one 

typically being a newer model [8], [9]. Rectangular targets 

of varying reflectance and orientation are commonly used 

for characterization. Though mixed-pixel analysis is 

performed in several of the studies, sensor capability in 

modeling rough unstructured surfaces or features smaller 

than the LIDAR spot size is not explicitly considered.  

Conversely, prior work in evaluating vision-based sensors 

such as stereo and structured light have focused on the 

algorithmic aspects of enhancing image quality and feature 

matching for correspondence [10], [11]. This is perhaps due 

to the observation that measurement quality from 

triangulation sensors is most affected by the under-

constrained nature of image formation, and not the physical 

implementation of the sensors. 

Some prominent examples of related work comparing 

multiple range sensing modalities include RADAR and 

LIDAR for traffic negotiation [12]; photogrammetry and 

structured light [13]; LIDAR and stereo vision [14] and non-

experimental comparison of LIDAR, triangulation, 

interferometry, and others [15]; and configurations for 

planar LIDAR actuation [2].   

III. CHARACTERIZED SENSORS 

Sensors were selected based on prevalence in robotics 

usage and availability to the authors (refer to Fig. 1 in 

Section 1 and Table 1); a total of 10 sensors were evaluated. 

Experimental configurations (i.e. actuation, physical 

parameters, and external illumination) were chosen to reflect 

optimality for void modeling at a critical sensing distance of 

2-8 meters. This study is not intended to be a comprehensive 

sampling of sensor configuration parameters, but rather a 

broad sampling of sensor types specific to the application. 

For example, a baseline of 250mm and infinite focal 

distances were utilized for stereo vision; a less common 

configuration found in indoor robotics. There is no claim 

that results generated herein are strictly valid for any sensors 

or configurations other than those evaluated. A brief 

discussion of technologies sampled occurs in the following 

section.  

Time of Flight - Time of Flight LIDAR sends a laser 

pulse in a narrow beam and measures the time taken for the 

pulse to return after reflection. Distance is calculated from 

the delay and knowledge of the constant speed of light. Most 

ToF lidars used in robotics application today are planar 

scanners in which a single point laser is rastered horizontally 

using a spinning right angle mirror. By rotating or nodding 

the scanner, a volume of 3D data is obtained. Multiple 

planar ToF sensors from SICK AG (LMS111, LMS200, 

LMS291, LMS511) and Hokuyo Ltd. (UTM-30LX) were 

characterized in this study to reflect the prevalence of 

LIDAR scanners in robotics. Three-dimensional data was 

collected by mounting to a 360 degree rotary actuator. This 

configuration was described by Omohundro as being 

optimal for void modeling as compared to simpler nodding 

configurations [1]. The rotary mount was actuated at a slow 

1deg/sec to enable selective angular downsampling in post 

processing. As optical offsets are likely in mechanical 

actuation, proprietary dewarping software was utilized to 

estimate offset parameters.  

Triangulation - Triangulating range sensors use the 

principle of intersecting geometric rays to measure distance 

to scene points. These rays must originate from two points 

 
 

Fig. 1.  Illustration of Sensors and Configurations Evaluated – (1) rotating Hokuyo UTM-30LX, (2) rotating SICK LMS111-10100, (3) rotating SICK 

LMS291-S14, (4) rotating SICK LMS511-10100, (5) rotating SICK LMS200-30106 affixed on a mobile robot, (6) Faro Photon80, (7) IFM O3D 201, 

(8) custom structured light sensor, (9) custom stereo vision sensor and (10) Microsoft Kinect. . 

 



  

with fixed and known translation. Two types of vision-based 

triangulating sensors were evaluated: stereo vision and 

structured light. 

Stereo cameras measure the distance to objects by 

comparing two images of a scene from two cameras and 

recognizing common features across the images. 

Triangulation of these “correspondences” with a known 

baseline produces depth. For testing, two Prosilica GC1290c 

1.2MP cameras with 5mm lenses were parallel-mounted 

with a horizontal baseline of 250mm and calibrated. 

Lighting was provided in close proximity to (but behind the 

field of view of) the camera system during the underground 

modeling. Feature detection and point cloud generation was 

accomplished using the LIBELAS software for dense stereo 

matching [16].    

Structured light sensors solve the correspondence problem 

by utilizing a light source (the dual of a camera) to 

unambiguously “paint” the scene with known identifiers. A 

single, static camera observes the change in brightness of 

scene points over time, which can then be decoded to 

generate correspondences between the source and camera. 

Two structured light systems were evaluated for testing: a 

custom sensor constructed by integrating a visible-light LCD 

projector with a Point Grey camera and the infrared 

Kinect™ sensor from Microsoft. The in-house solution 

utilizes a 40 degree field of view for both the camera and 

projector, which are angled 15 degrees inward with a 

250mm baseline for optimal coverage and accuracy at two 

meters from the sensor. The Kinect was used in an off-the-

shelf configuration with libfreenect to provide a 1-frame 

depth estimate. 

Phase Shift - Phase shift, also known as FMCW 

(Frequency Modulated Continuous Wave), sensors 

continuously scan the scene with a periodic wave of light, 

modulating the frequency in a known, repeatable manner. 

The detected change in phase and frequency of the returned 

signal give the distance to the scene. This method of 

measurement produces high sample density and accuracy as 

there is no need to wait for a return pulse between 

measurements as in time-of-flight technology. A Faro 

Photon80 (FMCW LIDAR) was characterized for this study.  

Focal Plane Array (Flash) LIDAR - Flash LIDAR 

operates like a digital camera, gathering information in a 2D 

array of pixels through lensing.  Each pixel simultaneously 

measures a distance and reflective intensity each time a 

pulsed laser in the unit flash-illuminates the scene.  The 

resulting snapshot provides a 3D model with reflectivity 

data. The IFM O3D201 sensor is a 50x62 pixel, 24fps flash 

LIDAR that was used in testing.  

IV. METHODOLOGY 

Methodology for comparative analysis of range sensors 

comprises two parts: (1) characterization in a lab utilizing an 

ideal, artificial target and (2) in situ characterization in 

representative underground environments. The purpose of 

the lab calibration is to establish a reliable baseline of 

comparison and to estimate uncertainty bounds for the 

sensors. As the true geometry of unstructured void 

environments cannot be known to arbitrary precision, the 

other sensors must be compared against the best performing 

sensor determined in lab trials, with uncertainty values 

informing a lower bound on error. Environmental 

characterization effectively stresses sensors with the gamut 

of materials, features and scenes likely to be found in the 

underground spaces of interest. Thus, in situ results enable a 

holistic view of performance that closely mirrors application 

intent. Both lab and in situ characterization are necessary to 

paint a complete picture of sensor quality.   

A. Ideal Target Characterization 

Laboratory calibration involves scanning a 1.25m x 

1.25m, tiled and colored 3D checkerboard. While such 

“ideal” targets do not exist in field application, their 

artificial nature enables construction and knowledge of the 

true geometry to arbitrary tolerance. This information is 

useful in determining the true error of range sensors, which 

cannot be surmised in unstructured environments, as well as 

for testing the rare “edge cases” of sensor error. The 

checkerboard utilized is constructed to a tolerance of 1mm, 

beyond the expected single-shot accuracy of most 

contemporary range sensor technologies. 

Features of the checkerboard are illustrated in Fig. 2. Two 

colors of semi-gloss dark tiles, raised 1.9cm (0.75”), are 

mounted on a neutral white diffuse backplane. Varying the 

surface reflectance of the tiles as well as the color enables 

characterization of sensor error as affected by target 

material. The pyramidal tiles located on the cardinal points 

of the target rise 3.8cm (1.5”) from the backplane and are 

TABLE I 

EVALUATED SENSORS AND CONFIGURATIONS 

Sensor Model Technology Evaluated Configuration 

SICK LMS200-

30106 
Planar ToF LIDAR 0.5 x 180 degree rotating, 8m 

mode 

SICK LMS291-

S14 
Planar ToF LIDAR 0.5 x 90 degree rotating, 8m 

mode 

SICK LMS111-

10100 
Planar ToF LIDAR 0.25 x 270 degree rotating, 20m 

SICK LMS511-

10100 
Planar ToF LIDAR 0.5 x 190 degree rotating, 24m 

clipped 

Hokuyo UTM-

30LX 
Planar ToF LIDAR 0.25 x 270 degree rotating, 24m 

clipped 

Structured Light* Structured Light PtGrey Scorpion w/ projector 

(1280x1024), 0.25m baseline 

Microsoft Kinect Structured Light Off the shelf configuration, 

libfreenect, ~5m range 

Stereo Vision* Stereo Vision 2x Prosilica GC1290 (1290x960), 

ELAS, 0.25m baseline 

IFM O3D 201 Flash LIDAR Off the shelf, ~8m range 

Faro Photon80 Phase-shift LIDAR Off the shelf, 1/8 res, (0.072 x 

360 x 320) degree, 24m clipped 

 *denotes an in-house implementation 



  

used to automate the process of aligning scans as well as to 

test pin-point sampling. 

The target is centered such that the normal ray of the 

sensor passes through the middle tile. Scans are taken at a 

distance of 2.0m from the sensor origin and repeated for 

primary angles of 90 (normal), 67.5 and 45 degrees. 

Calibrated mount locations on a support frame provide 

ground truth for sensor positions from which the 

checkerboard is scanned (Fig. 2). Raw output from sensors 

is first transformed to point clouds with minimal filtering 

(no-return, max/min range). Point cloud data is then aligned 

with the ideal checkerboard model. While approximate 

sensor and target orientation are known, rotational 

ambiguities, inaccuracies in mounting and the intrinsic 

properties of the sensor result in error in raw data. 

Moreover, while the target may be oriented at a number of 

angles, the ideal model and error analysis assumes a fronto-

parallelism. Utilizing initial estimates of sensor pose, the 

processing algorithm automatically detects the corner 

features of the checkerboard and finds a rigid transformation 

to the known model. A numerical optimization method, 

iterative closest point (ICP), is then used to fine-tune the 

alignment in the presence of nonrigid distortions and noise 

(Fig. 3). Points detected as the raised tiles are colored red, 

while points detected as part of the back plane are green. 

Corners of the files are marked with blue +’s. Quality 

metrics are computed after alignment.  

Checkerboard data was collected for all 10 sensors. This 

data was evaluated using two metrics inspired by modeling 

applications, detailed below. Refer to Fig. 5 in the next 

section for illustration of these concepts on actual model 

data.  

Range Error. The range error is the error between an 

observed data point and its known true location for a single 

measurement. The mean of the error distribution is a 

common measurement of accuracy. The range error used in 

this paper is calculated by aligning sensor data of the target 

to the ideal model using ICP and then raytracing the 

datapoints from the sensor origin. The L2-norm of the 

difference is the reported value. A large range error indicates 

an inaccurate or poorly calibrated sensor. The standard 

deviation of the range error is a measurement of precision.    

Interpoint Distance. A frequent objective of 3D scanning 

is to create a mesh model or to infer surface geometry for 

object recognition. Both these applications require dense and 

regularly distributed surface samples. Interpoint statistics are 

generated by performing a 2D Delaunay triangulation on the 

surface points and measuring the distribution of resulting 

triangle side lengths. Large interpoint distances are 

indicative of “holes” in the model while a large variance in 

interpoint distances is indicative of badly shaped triangles. 

This statistic reflects the density of measurements on the 

target, which is an amalgam of angular density, sample rate, 

and field of view. Many actuated sensors which generate 

gratuitous readings but lack angular resolution in one or 

more axes exhibit inferior performance in resolving objects 

as compared to low-rate, fixed-resolution sensors. 

B. Environmental Characterization 

Three environments were selected for in situ mapping 

evaluation (Fig. 4): an unstructured corridor, an unstructured 

intersection and a closed structured tunnel. These selections 

were motivated by reason that generalizations of these 

environments represent the building blocks of most 

underground voids. For example, modern coal mines 

comprise rectangular grids of corridors and intersections 

while most caves, lava tubes and tunnels are simply lengthy 

corridors.   

The “unstructured” environments mapped are located at 

the Bruceton Research Coal Mine in Pittsburgh, Pa. The 

corridor is a 60m tunnel with approximately 1.75 x 2.0m 

cross section, of which 20m was mapped with sensors. The 

intersection scene is a complex cross intersection of a wide 

corridor (3m) and a narrow corridor (1m). The primary 

construction in the mine environments is coal dust covered 

gunnite with a polyester mine curtain in the corridor and a 

wooden roof support in the intersection. The structured 

corridor is an indoor underground tunnel (formerly a mine 

tunnel), of 2.0 x 2.0m cross section at Carnegie Mellon 

University. It is made of a smooth concrete, painted white, 

and approximately 20m in length with a dead end. A series 

of heat and water pipes lines one of the walls.  

The unstructured corridor was mapped by incrementing 

sensors longitudinally along a length of 20m. The number of 

scans (i.e. incremental distance) was calculated from the 

range and modality class of each sensor and ranged from 3, 

7 or 20 scans. Blue fiducial cubes were placed in surveyed 

locations to enable fast stitching of incremental models, 

though the final alignments were tuned using iterative 

 

Fig. 3.  ICP aligned range data from Photon80 with detected tiles and 

background (left) and Range error plot illustrating the “mixed pixel” effect 

near the edge of the tiles (right). 

 

Fig. 2.  A 3D checkerboard target used for ideal characterization (left), 

example experimental setup (LMS291 shown) for scanning the 

checkerboard (middle), and a mesh model of checkerboard generated using 

range data (right). 



  

closest point (ICP). The intersection was mapped from a 

single static location, but sensors with narrow field of were 

rotated to cover the scene.  The structured corridor was 

mapped from a single location, aimed at the dead end. 

Dimensional and usage restrictions on some of the sensors 

prevented data collection from every sensor in all 

environments (ex. the LMS200 was affixed to a large mobile 

robot). 

Metrics employed to assess range data collected from the 

sample environments are discussed below. These metrics are 

extensions of those used in ideal analysis with a few 

differences due to lack of known “ground truth” geometry 

the environment. Chiefly, calculations are patch-based 

(quantized) to enable simple analysis on stitched models of 

multiple viewpoints without requiring 3D Delaunay and to 

establish approximation of true values from densely 

distributed local data.  Where data density was insufficient 

for patch based analysis, less accurate aligned data from 

another sensor was used for comparison. 

Range measurement sample density. Quality feature 

extraction from range data requires sufficient sample 

density. Sparse range data presents limited geospatial 

content and difficult determination of point associations. 

Moreover, robotic navigation processes such as obstacle 

detection, trajectory planning and other perception 

approaches rely on sufficient surface coverage to work 

properly. Surface coverage density is computed by counting 

the number of points that fall within two dimensional 

surface patches. The patches are approximately 100cm2 or 

10cm x 10 cm in size (see Fig. 5). An upper threshold of 20 

points (designated as “sufficient” coverage) was set, with 

the remaining cells containing 20 or less points. Thus, a 

curve of density vs. distance is generated. Range sensors 

typically display concentrated density in the near field, 

which tapers off with increasing distance. Results 

summarized in Table II describe this metric in terms of 

Points-Per-Surface Patch (PPSP). 

Range measurement accuracy over surface patches. 

Though dense, mean-centered samples may correctly 

approximate volumetric properties of the environment, high 

variance (excessive noise) results in “blurry” models, 

making minute features difficult to distinguish. Range 

variance is computed by applying a squared error statistic to 

the 10cm x 10cm surface patches. The error used is the 

normal distance from each measurement to the fitted plane 

for each patch. Results summarized in Table II describe this 

metric in terms of Variance-Per-Surface Patch (VPSP).   

Amortized surface coverage. Long range feature 

identification can increase the accuracy and reliability of 

position estimation and fusion of multiple models. Short 

range or small field of view not only results in fewer 

distinguishing features for extraction, these features also 

have a smaller baseline, resulting in greater uncertainty. 

Moreover, short sensing horizons indirectly affect quality in 

automated model building by inducing erratic trajectory 

behavior. Lastly, complete surface coverage is required for 

accurate volumetric analysis of void models. Surface 

coverage is calculated by tallying patches that have been 

sampled. Patches associated with one or more points is 

labeled as “occupied.” Patches with no points are labeled 

 

Fig. 4.  Characterization environments from top to bottom: (1) unstructured 

corridor (2) unstructured intersection, and (3) structured corridor. 

 

Fig. 5.  Metrics of Comparison on Tunnel - (Top Left) Surface patch 

density is calculated from the number of points within proximity to a patch 

center. (Top Right) Range accuracy is computed by comparison of data to 

a patch mean value. (Bottom) Holes in surface coverage are identified. 

Missing surfaces can be caused by occlusion, surface incidence angles or 

low reflectance. 



  

“unoccupied.”  Surface coverage is therefore a ratio of 

occupied patches to a total patch count (determined 

manually from the size of the environment). This metric can 

be seen as a scalar summary of the density curve. Results 

summarized in Table II describe this metric in terms of 

Percent Surface Covered (PSC). 

V. RESULTS 

Using the metrics described in the previous section, 

analysis was performed on sensor scans of the ideal target. 

The results are shown in Fig. 6. The x-axis (range error) is 

the empirical value of the accuracy and the y-axis (tri-

neighbor interpoint distance) represents density. Sensors 

closer to the origin (zero) have better performance. The 

colored ellipses represent the uncertainty in the estimation 

of this value and are scaled by a factor of two for clarity. 

Experimental error, such deviations in mounting and data 

capture, as well as noise generated in the physical sensing 

process contribute to greater uncertainty.  

The results show a natural grouping of the sensors into 

three performance classes. The Faro Photon80 was in a class 

of its own in regards to both metrics: a conclusion consistent 

with its pricepoint. As-built and survey LIDARs such as the 

Photon80 are designed to trade portability for maximal 

modeling performance.  

All five planar time-of-flight sensors exhibited similar 

performance in a class below the Photon80, which is 

consistent with manufacturer specification and intended 

application. The LMS200, which has been a staple on 

underground modeling robots due to its lack of built-in 

filter, ties the LMS511 in accuracy and nominally wins out 

over the others. It should be noted that software issues 

prevented the LMS511 from operating at the highest angular 

resolution, though accuracy was unaffected. Had the sensor 

been capable of the factory maximum 0.125deg resolution, 

it likely would have been the best performing ToF LIDAR.  

Inconsistent performers comprise the last class of range 

sensors. These sensors feature notable shortcomings in one 

or both of the metrics. Flash LIDAR is a nascent technology 

for outdoor sensing; the IFM O3D has comparable 

performance to the in-house designed stereo and structured 

light sensors, though it exhibits marginally better balanced 

performance and higher robustness. The structured light 

sensor has high range error arising from poor reflectivity 

that affects localization of light stripes at the highest scale, 

but the pattern and consistency of identified points is 

uniform and dense resulting in better target coverage. Stereo 

vision is strongly affected by the lack of texture and the 

repetitive tiling on the checkerboard. Depth estimation is 

generally accurate near the edges and corners of tiles and 

poor in the middle. The ELAS algorithm automatically 

rejects these ambiguous areas, leaving accurate points, but 

with large holes in between. Results from the Kinect sensor 

are intriguing. While the density score is skewed due to 

fortuitous combination of narrow field of view and high 

density of the CCD, the pixel samples are not truly 

independent due to interpolation. However, the Kinect 

functions admirably as a low-cost volumetric mapper in this 

ideal case, greatly outperforming its pricepoint. 

Analysis was also conducted in field environments to 

assess the impact of natural and artificial surfaces on each 

sensor. Each environment exhibits varying environmental 

materials, levels of occlusion and surface conditions that 

collectively affect performance of the laser scanners.  

Examined here (as described in Section 4.2) are the Points-

Per-Surface Patch (PPSP), Variance-Per-Surface Patch 

(VPSP) and Percent Surface Covered (PSC). PPSP looks at 

the average number of points residing in a surface patch 

over all surface patches considered (spanning approximately 

20m from the sensor). VPSP is the averaged variance of a 

surface patch over all surface patches considered. Lastly, 

PSC is the average Percent Surface Coverage, a ratio of the 

 

Fig. 6.  Summary of Ideal Target Characterization 

 

Fig. 7.  Detail of Time-of-Flight Sensor Performance 



  

number of patches with data over the total number of 

patches that are averaged across all scans in a particular 

environment (see Table II). 

The LMS111 came closest to the baseline sensor 

(Photon80) across all metrics. In fact, it exhibits a 

marginally lower measurement variance (VPSP) score than 

the Photon80 in several cases. Possible explanations for this 

anomaly include the presence of moving average filtering 

internal to the LMS111 (independent of the single-shot 

mode utilized) resulting in over-smoothed surfaces or a non-

uniform angular bias of samples in each patch due to 

rotational actuation. The Photon VPSP should be taken as 

the best estimator to the true surface roughness value. The 

conclusion reached here is also contradictory to the ideal 

analysis, which nominally placed the LMS511 as the best 

performing time-of-flight sensor in accuracy. Generally 

speaking, the specific ordering of these sensors is mostly 

within the intra-class variance of ToF technology seen in 

this study. However, as density and accuracy estimation are 

not entirely independent, this effect could stem from lower 

numerical stability when fitting patch planes to the less 

angularly dense LMS511 data. The other time-of-flight 

sensors follow the LMS111 closely, with the particular 

LMS291-S14 unit generating anomalously high PPSP score 

due to a maximum range threshold of 8 meters. This 

threshold introduces a bias in regards to PPSP, which is a 

distribution-averaged value. 

 The PSC results arguably paint a more complete picture 

of density than PPSP. In this metric, the 8 meter range was a 

limitation for the LMS 291, while there was ample surface 

coverage by the LMS111 until approximately 20 meters. 

The Photon80 consistently captured the majority of the 

surfaces considered (with the maximum occurring in the 

unstructured corridor with approximately 52% of the 

available surface). Though the Photon80 is the baseline 

sensor, coverage values are not 100% due to holes and 

 

Fig. 8.  Rendered Faro Photon80 mesh models from the structured (top) and unstructured corridor environments (bottom) are shown in the left image. 

A montage of point clouds (right) illustrates differences between the (1) Hokuyo UTM-30LX (2) Sick LMS291 (3) Sick LMS200 and (4) Sick 

LMS111 sensors. The points are mapped onto a grayscale albedo map of the structured corridor generated using the Photon80.  

TABLE II 

ENVIRONMENTAL SURFACE COMPARISON 

  Unstructured Corridor  Unstructured Intersection  Structured Corridor 

  PPSP* VPSP PSC  PPSP VPSP PSC  PPSP VPSP PSC 

Photon80  9.97 9.0e-4 52.08  8.34 0.09 30.05  9.16 3.1e-3 39.39 

LMS111  18.58 2.0e-3 29.16  18.98 1.5e-2 23.71  18.49 1.0e-3 36.35 

LMS200  - - -  16.52 0.12 24.75  14.18 9.0e-3 36.44 

LMS291  16.98 5.2e-3 24.52  16.7 3.0e-3 18.83  17.27 4.9e-3 22.85 

LMS511  19.10 6.2e-2 21.99  - - -  18.35 5.7e-2 42.30 

UTM30  - - -  - - -  18.89 9.4e-3 33.96 

O3D201  1.87 1.0e-3 3.14  2.04 3e-3 3.09  - - - 

Stereo  19.58 7.31 0.45  18.00 1.7e-2 6.27  - - - 

S. Light  - - -  - - -  12.84 4.9e-3 1.65 

Kinect  13.01 8.7e-3 15.10  19.64 0.04 5.57  16.64 9.0e-3 11.44 

*PPSP in units of points, VPSP in units of meters
2
, PSC in units of percent. 

 



  

occlusions in the convex hull of measurement. In terms of 

relative surface coverage, the time-of-flight LIDARs 

achieved between 40-60% of the Photon80’s coverage in the 

unstructured corridor, 60-75% coverage in the unstructured 

intersection and 75-100% in the structured corridor. These 

results correlate with the maximum possible sensing 

horizons (in decreasing order), where the photon performs 

particularly well in the lengthy unstructured corridor.  

As a group, the inconsistent performers measured 

particularly poorly in density and coverage metrics in 

absolute terms, but did not underperform significantly in the 

accuracy (VPSP) metric. Once again the Kinect 

outperformed expectation with accuracy value about 50% 

less than the ToF LIDARs and coverage between 33-50%. It 

should be noted that while LIDAR sensors were thoroughly 

represented in this study, results for triangulation sensors 

could be considered data deficient. A multitude of possible 

configurations exist in camera and lens selection and 

matching algorithms. Shrewd enhancements to the evaluated 

setups could shift the results of triangulation sensors closer 

to LIDAR or decrease the uncertainty ellipses. 

VI. CONCLUSION 

This paper presents a cross-modal methodology and 

metrics for comparing range sensors in the context of 

underground void modeling. The modeling capability of 10 

sensors - representing time-of-flight, triangulation, phase-

shift and focal plane technologies - were evaluated on an 

idealized checkerboard target and in characteristic 

underground void environments. Three natural groupings of 

sensors were identified based on sample accuracy and 

density metrics. In general, sensors were found to be 

strongly cost-correlated, with a notable exception being the 

Microsoft Kinect which was found to greatly outperform 

cost. The authors expressly do not advocate for a particular 

“best” sensor, as this study considers only a sampling of 

possible parameters in the sensor selection function. The 

methodology and results presented are intended to 

supplement decisions for sensor selection and enable more 

accurate estimation of error bounds for similar applications. 

However, in the authors’ motivating tunnel application, the 

Hokuyo UTM30-LX was found to have the right balance of 

performance, features and cost. 

Immediate roadmap for this work comprises the 

evaluation of additional sensors of interest. This includes 

greater sampling of stereo and structured light 

configurations and inclusion of omitted technologies such as 

multi-beam time-of-flight sensors (i.e. Velodyne HDL-64E) 

and commercial line scanners (i.e. Minolta 910). A database 

from this work is planned for public release to facilitate 

open involvement in the evaluation of new sensors. Possible 

future extensions include a more thorough sampling of 

experimental environments. Though this study has evaluated 

macro-scale geometry which represents the majority of 

underground environments, a variety of materials and 

surface geometry exists across tunnels, caves, mines and 

planetary craters. It is prudent to observe if or how 

performance varies with environment type and how closely 

the results presented in this paper hold for related 

environments. 

ACKNOWLEDGMENT 

The authors thank Dominic Jonak, David Wettergreen 

and Caterpillar Inc. for generosity of time and resources. 

REFERENCES 

[1] Omohundro, Z.. Robot Configuration for Subterranean Modeling. PhD 

Dissertation. Robotics Institute, Carnegie Mellon University, 2007. 

[2] Desai, A., Huber, D. Objective Evaluation of Scanning Ladar 

Configurations for Mobile Robots. In Proc. 2009 IEEE/RSJ 

International Conference on Intelligent Robots and Systems, 2009. 

[3] Morris, A., Ferguson, D., Omohundro, Z., et al. Recent Developments 

in Subterranean Robotics. Journal of Field Robotics, 2006. 

[4] Wong, U., Garney, G., Whittaker, W., Whittaker, R. Camera and 

LIDAR Fusion for Mapping of Actively Illuminated Subterranean 

Voids. In Proc. of  International Confe-rence on Field and Service 

Robotics, 2009. 

[5] Okubo, Y., Ye, C., Borenstein, J. Characterization of the Hokuro 

URG-04LX Laser Rangefinder for Mobile Robot Obstacle 

Negotiation. SPIE Defense, Security + Sensing, Unmanned Systems 

Technology Conference, 2009.   

[6] Ye, C., Borenstein, J. Characterization of a 2-D Laser Scanner for 

Mobile Robot Ob-stacle Negotiation. IEEE International Conference 

on Robotics and Automation, 2002. 

[7] Kneip, L., Tache, F., Caprari, G., Siegwart, R. Characterization of the 

compact Hokuro URG-04LX 2d laser range scanner. IEEE 

International Conference on Robotics and Automation, 2009.  

[8] Anderson, D., Herman, H., Kelly, A. Experimental Characterization of 

Commercial Flash Ladar Devices. International Conference of Sensing 

and Technology, 2005. 

[9] Chiabrando, F., Chiabrando, R., Piatti, D., Rinaudo, R. Sensors for 3D 

Imaging: Metric Evaluation and Calibration of a CCD/CMOS Time-

of-Flight Camera. Sensors, 9(12):10080-10096, 2009. 

[10] Anchini, R., Loguori, C., Paciello, V., Paolillo A. A Comparison 

Between Stereo-Vision Techniques for the Reconstruction of 3-D 

Coordinates of Objects. IEEE Trans-actions on Instrumentation and 

Measurement, Vol. 55, No. 5, 2006.  

[11] Seitz, S., Curless, B., Diebel, J., Scharstein, D., Szeliski, R. A 

Comparison and Evalu-ation of Multi-View Stereo Reconstruction 

Algorithms. In Proc. IEEE Conference on Computer Vision and 

Pattern Recognition, 2006.  

[12] Fischer, J., Menon, A., Gorjestani, A., Shankwitz, C., Donath, M. 

Range Sensor Eval-uation for Use in Cooperate Intersection Collision 

Avoidance Systems. In IEEE Proc. Vehicular Networking Conference, 

2009. 

[13] Radosevic, G. Laser Scanning Versus Photogrammetry Combined 

with Manual Post-modeling in Stecak Digitization. In Proc. 14th 

Central European Seminar on Computer Graphics, 2010.  

[14] Matthies, L., Grandjean, P. Stochastic Performance Modeling and 

Evaluation of Ob-stacle Detectability with Imaging Range Sensors. 

IEEE Transactions on Robotics and Automation, Vol. 10, 1994. 

[15] Blais, F. Review of 20 Years of Range Sensor Development. Journal 

of Electronic Im-aging, 13(1): 231-240, January 2004.  

[16] Geiger, A., Roser, M., Urtasun, R. Efficient Large-Scale Stereo 

Matching. In Proc. Asian Conference on Computer Vision, 2010.  


