LB Robotics

An Undergraduate Club of theiUniversity at Buffalo3

2009 Intelligent Ground Vehicle Competition

Daniel Muffoletto, Mark Tjersland, Tim Montgomery, Colin Lea, Mike DiSanto, Ben Deuell, Chris
Nugent, Matt Pivarunas, Chih Yong Lee, Darwin Yip, Jake Joyce, Doug Calderon,
Pradeep Gollakota, Dominic Baratta, David Berquist, Ashish Kulkarni, Matt Mott,

John-Paul Sitarski, Andrew Puleo, Don Monheim, OluwatIbi Busari

Advisor: Dr. Jennifer Zirnheld

| certify that the engineering design of the vehicle described in this report was done by the current student
team and has been significant and equivalent to what might be awarded in a senior design class.

Dr. Zirnheld
Department of Electrical Engineering
University at Buffalo

. Overview

The University at Buffalo Robotics Club (UBR) is competing for its second year in the 16™ annual
Intelligent Ground Vehicle Competition (IGVC). The team of undergraduate students used their
knowledge from the previous contest to build a completely new vehicle that is significantly more
capable than it’s previous entry. Extensive use of Computer Aided Engineering (CAE) tools and
simulation resulted in an outcome that met their original goals. Despite the team’s diverse mix in
education level, this year we have succeeded in bringing younger students up to speed and

implementing innovative ideas. The team breakdown is as follows:

Team Leader
Dan Muffoletto

(Software Leader) (Hardware Leader)
Mark Tjersland CEN/EE 2009 Dan Muffoletto EE/PHY 2009
Doug Calderon CEN 2012 Tim Montgomery EE 2009
Dominic Baratta cs 2012 Mike DiSanto EE 2009
Jake Joyce CS/GEO 2010 ColinLea MAE 2011
David Berquist cSs 2010 Ben Deuell MAE 2012
Pradeep Gollakota CS/MTH 2010 Chris Nugent EE 2012
Ashish Kulkarni (&) 2009 Matt Pivarunas MAE 2012
Matt Mott (o 2010 Chih Yong Lee MAE 2010
John-Paul Sitarski cs 2010 DarwinYip MAE 2012

Oluwatlbi Busari MAE 2012

CEN = Computer/Electrical Engineering :: EE = Electrical Engineering :: MAE = Mechanical Engineering
CS = Computer Science :: GEO = Geology :: MTH = Mathmatics :: PHY = Physics

Design Process

This year’s robot is the second iteration for UB Robotics. Last year’s version was crucial in our
understanding of the steps needed to create an autonomous robot of this scale. This year we spent
less time figuring out what needed to be done and more time researching algorithms for navigation
and learning about more intricate circuit design. Based on group discussion and feedback from

professionals we planned to focus more time in the following areas:

Hardware Software

Drive train Localization
Motor Controller Sensor Integration
RF Control Vision

Frame Mapping

Path Planning

Foremost, our goal was to create a robust robot capable of completing the navigation and
autonomous challenges for the IGVC. Secondary goals include building a vehicle that can handle a
variety of rugged terrains and have a platform that was robust enough to be used in future years. We
had a limited budget and had to plan accordingly; we built as much as possible from scratch including

the circuits and vehicle manufacturing.

Il. Hardware

Our club utilized computer aided engineering (CAE) tools whenever possible in order to minimize
wasted time and effort in later phases of development. For CAD we used Autodesk Inventor 2009.
We chose this over other graphics packages because it is free for our members and it is comparable

to other professional CAD software.

Il.1 Mechanical Design

On our previous design, our rugged platform gained a lot of
attention from professionals in industry and academia. This

attention prompted us to continue with this style rather

than being minimalist.

Figure 1 Lower Frame

The chassis is constructed of 1” square tubing with 1/8” sidewalls. The tubing was welded into a
lower and upper half. The lower half houses the motors, batteries, and encoders. The upper half

contains electronics and the computer. On the outside are mounts for sensors.

Mechanical Innovations
Batteries are heavy and inconvenient to regularly take out. Significant time was spent in designing a
set of battery packs that can be handled easily. Two sealed lead acid batteries are packed into a

single casing that can be swapped out of a compartment in the robot.

Figure 2 Battery boxes (Open, Final, CAD)

Big Blue has four motors that directly drive the wheels. While having four motors adds weight and
cost to the vehicle, this greatly increases control and maneuverability. It eliminated rocking and
vibration problems we had from our previous two-motor system and more importantly has a zero
turning radius. The wheelbase width-to-length ratio is 1.1 which allows for greater stability and

smoother turning.

A low center of gravity makes the vehicle more stable, distributes weight on the tires more evenly
during accelerations, and prevents rollovers and excessive rocking. For this reason we kept the
batteries and motors (the heaviest parts) as low as possible. Based on information from our CAD

program, the center of gravity is 13 inches above the ground.

In order to secure the robot in case of a crash there are bumpers on the front. This avoids damage to

the laser rangefinder and decreases damage to the body.

FEA Analysis

Finite Element Analysis was done in Autodesk Inventor to find out where the weak points on the
lower frame are located. Many simulations were done with forces distributed over the top, pulling
on the hitch, coming from the motors, and distributed over various points. Using forces totaling over
500 Ib, the factor of safety never went below 3. Pictures below are using extreme forces to show

where the weakest points are located.

Figure 3 FEA (Left: Force on each corner; Right: Force pulling on hitch)

Our factor of safety is based on ideal conditions. Welds were done by our members and are likely not
as strong as those simulated. The factor of safety was high enough in our simulations that we believe

the frame will not break except under extreme circumstances.

Sensors

The need for sensors can be classified into those that can find obstacles and those that help
determine where the robot is located. The first problem is for determining objects like cones, barrels
and fences as well as for locating boundaries such as the white line in the autonomous challenge.
The second problem is figuring out where we are in relation to where we were before so that we
don’t run into previously discovered obstacles. Due to error, redundant sensors are necessary to get

a more accurate depiction of the real world.

Sight. For determining obstacles we used a Panasonic 3CCD video camera with a 37mm wide angle
lens. The lens creates minor distortion but provides us with a broader set of data. It is mounted 25
inches off the ground. These measurements were chosen based on empirical data from a field test,
and it was determined that it would have a field of view equivalent to a camera mounted to a tall

mast.

Rangefinding. To find distances to objects we decided to use a SICK PLS101 laser rangefinder. Ideally,
it is capable of finding objects within a radius of 50 meters and field of view of 180 degrees. We

chose this model, which is regularly used for industrial safeguarding, was significantly cheaper for us

to acquire ($215 vs. $3600+ for the LMS series) and provides a level of accuracy that we believe is

sufficient.

Localization. A Novatel Propak-V3 DGPS was donated to us last year. It provides accuracy of up to 0.1
meters. It records GPS coordinates and orientation. It is a differential GPS with an Omnistar HP

subscription, which means it gets corrections from base stations therefore making it more accurate.

We are using a PNI 3-axis digital compass with pitch/roll compensation to find the vehicle’s heading

Odometry. US Digital E4 Wheel encoders are used to give more accurate velocity data.

Each sensor has an independent accuracy, resolution and refresh rate. Because these are not perfect
the localization data can be combined using an Extended Kalman Filter to get a more accurate

output of where we are.

Component Accuracy/Resolution Refresh Rate
Propack GPS 0.1 meters 20 Hz
SICK LIDAR 7 cm at 4 meters 10 Hz
Camera 720 X 480 pixels 30 FPS
Digital Compass Heading: 0.1 degrees 8 Hz
Wheel encoders 2560 CPR at wheel 10 Hz

1.2 Electrical Design

The UB Robotics club designed a significant portion of custom electronics for Big Blue.

Batteries and Power Supply

A custom power supply board was designed to regulate the battery voltage for the other electronics
onboard the robot. Aside from the unregulated 24V rail for supplying the LIDAR and motor
controller, a 12V rail (capable of 7A) was needed for the GPS, and wireless router, a 5V rail (capable of
5A) was needed for the digital compass and USB hub, and a 7V supply was needed to power the
camcorder (in place of its battery). All rails are underutilized to allow for future expansion. An

overview of this system is shown below.

Rotate the four
battery packs for
continued use

24 Volt 24 Volt «" ||» ;:;’eorl; ol
0 Wa

Battery
Pack Pack Outlet

Battery Status Monitoring
Via USB Connection

Figure 4 Power Overview

All power supplies were designed using the Simple Switcher series of step-down regulators from

National Semiconductor. A picture of the power supply board is shown below.

Figure 5 Power Supply Board

Big Blue was designed to carry two 24V battery packs to
allow for a seamless transition when one battery pack is
running low. With the flip of a switch on the power
supply, the robot will draw its power from the second

battery, and the first can be replaced. This promotes a

Figufe 6 Battery Monitoring Board

healthy rotation of the batteries so that they will all age at the same rate.

In an effort to be able to intelligently know when to replace the batteries on the robot, a battery
monitor was designed and built in to the battery pack to log the battery voltage and output current.
It can output its readings to a seven segment display or over a USB interface to the laptop onboard

the robot. The completed battery monitor is shown to the right.

Motors

The vehicle is propelled by four NPC Robotics T64 brushed DC motors, with each motor directly
driving one of the robot’s four wheels. They are run at 24 volts and have an output power of
approximately 0.7 horsepower. Under low load at a slow speed, the motors draw about 5 amps.
With heavier loads or while turning in place, they can take up to 15 amps. Without speed limiting, the
robot can reach speeds of almost 10 mph. For the competition, this is limited in firmware by the

motor controller down to the required 5 mph max speed.

Motor Controller

After experiencing a near-catastrophic failure of an off-the-shelf motor controller a few weeks
before last year’s competition, and noticing that its emergency stop control was a flash-configurable
setting that occasionally reset itself, UB Robotics decided this year to build a custom motor
controller this year. In addition, it was found that there are very few motor controllers that are
intended to drive four independent motors of the size we are using. In going with a custom design,
the emergency stop and remote control capabilities were able to be integrated into the design. A

picture of the partially assembled controller is below.

Figure 7 Motor Controller Board

Four interchangeable H-bridges, each capable of driving a motor at up to 50V and 30A interface with
the main motor driver. The system is able to read the motor current, MOSFET temperature, and

wheel encoder speeds and relay that information to the computer over a USB interface.

Unlike in many commercial designs, the hardware emergency stop will turn off all of the FETs
through logic gates instead of through firmware. This is a much safer design, in that if the latching
emergency stop button is pressed, the motors cannot run, even if the microcontroller was reset or

had and experienced an error.

Lastly, the motor controller has a UART interface to a Linx Technologies 418 MHz RF Transceiver

through which it communicates with the remote control and wireless emergency stop.

Remote Control

A custom remote control and wireless emergency stop was designed for this project. Instead of

using an analog hobby remote control, the system sends the emergency stop signal and joystick

positions through digital packets that are checked for errors. Thisis a
much safer way for a human to control the robot and a more reliable
interface for emergency stop, as it removes the possibility for a stray
servo signal to take control of the vehicle. The remote interface’s
connection to the computer (through the motor controller board) also
allows us to load and start algorithms from the remote interface. To
accommodate the custom electronics and controls, a rapid prototyped

case was designed, which is shown to the right.

lll. Software
Software was one weak point last year. In order to operate better

autonomously, emphasis was put on mapping, navigation, and vision.

The whole year was spent writing an entirely new robotic system.

Figure 8 Remote Control

Platform
Software was developed targeting the Java SE 6 development kit, with vision processing code being
written in C++ using the OpenCV computer vision library. The computer used was a Dell Latitude

D830 with a dual core processor and 2GB of memory.

Architecture

In the lowest level of software, raw data is read from the sensors and processed into a usable form.
At this level, the vision processor takes camera frames and extracts line positions. The lines and
LIDAR data are merged to give a single estimate of the position of obstacles around the robot. The
Extended Kalman Filter (EKF) receives data from the differential GPS (DGPS), digital compass, and
wheel encoders. Using state estimation algorithms, a better guess of the actual position of the robot
in the world is generated. The obstacle data and position estimation are fed into the mapping
module, which stores this data over time. The path planner then takes the position estimate, the
map, and the goal and finds an optimal path between its location and the destination. The final path

is then used to drive the motors to navigate the robot along the path.

SENSORS

Wheel
Encoders

GPS

Digital
Compass

Portability

The software was designed to run on a variety of vehicle and computer platforms as the final vehicle
would not be ready until shortly before competition. For safe indoor testing of path planning
algorithms, an iRobot Create with an Asus Eee PC and SICK PLS 101 was used to navigate through

simulated courses in a hallway. Last year’s robot was used for testing outdoor path planning, vision

SENSOR DECISION
PROCESSING MAKING

Vision Path
Processing Planning

Obstacle

I Detection Mapping

Localization
(EKF)

Figure 9 Software Architecture

processing, and hardware integration.

Figure 10 Left: Cornelius avoiding buckets; Right: Testing on last year's robot

OUTPUT

Motor
Driver

Wireless
Diagnostic
Client

Simulator

The simulator allows users to add variously sized circular obstacles of varying radii and waypoints
though a GUI. This information is then fed into the software which then generates simulated LIDAR
and localization data as if there was actually a robot moving through the world. Error is added to the
data before it is handed to the robot making it more realistic. This allowed developers to test both

localization and path planning code without needing the actual robot.

Figure 11 Left: Building a world; Right: The world the robot has seen

Mapping

A major feature that was lacking in last year’s design was the mapping of obstacles that the robot
discovered throughout the course. A common failure was seen when an object moved out of the
field of view of the camera and the vehicle steered into it, terminating the run. The mapping system,
which we called the Dual Map, maintained two levels of data. The global level, which included all
data not within the robot’s current field of view, was static and did not lose data over time. The local
map, which included everything currently visible, was updated on each LIDAR cycle. Points that were
reported as obstacles in previous scans but now appear clear in the current scan are removed. This
helps to prevent map smearing caused by localization thereby increasing success of our path

planning algorithm.

Figure 12 Left: Corresponding LIDAR output; Right: Actual scenario

Path Planning

Using the map built from LIDAR and camera data, the position of the
robot from the localization module, and the goal, either a waypoint in
the navigation challenge or some forward progress in the autonomous
challenge, a path is planned using the A* graph search algorithm. Since
the algorithm generates the shortest path, which may brush against
objects, extra space is added around obstacles on the map to keep the

robot at a safe distance.

Waypoint Navigation

Waypoints are added into the mapping system by transforming the
latitude and longitude given into the Cartesian coordinate system using
the World Geodetic System 84 (WGS84) and trigonometry. Waypoints
are visited in the order specified by the use and the robot reaches them

within a 30c¢m radius.

Vision

Vision grabs each frame from the camera feed and applies a series of
stock OpenCV and custom algorithms in order to extract coordinates of
lines from the frame. First, the frame is converted from color to

grayscale (Fig. 13 Image 2), and then a histogram operation is applied to

L AT

Figure 13 Image at each stage

enhance the colors (Fig. 13 Image 3). A threshold operation is then applied to the frame, removing
channel intensities outside of a specified range (Fig. 13 Image 4). Noise is then filtered out by
removing contiguous blobs less than a specified width and height (Fig. 13 Image 5). The only major
features remaining in the frame are lines and obstacles such as cones and barrels. Our primary
objective is to determine coordinates of lines, so by using the same noise masking operation we are
able to filter out blobs greater than a specified width and height. A probabilistic Hough transform
operation provided by OpenCV is then used to find lines within a specified range of pixel coordinates

(Fig. 13 Image 6). This data is loaded into a packet and sent via TCP to the rest of the system.

Extended Kalman Filter

For good mapping and navigation a close estimate of your location is necessary. As detailed earlier,
sensors are not perfectly accurate. In order to compensate, an Extended Kalman Filter (EKF) merges
data and outputs a refined location. Essentially, it works by figuring out which sets of data are more
accurate over time. It dynamically assigns weights to each sensor and averages the data. An EKF is
used over other methods because of its ability to handle nonlinear equations. It is considered a
standard for localization. More detailed explanations can be found in Fredrik Ordernud’s paper
Comparison of Kalman Filter Estimation Approaches for State Space Models with Nonlinear

Measurements.

An EKF has two stages: Predict and Propagate. Predict estimates a new location based on new input
data and creates a new covariance matrix. Propagate is a set of functions that updates our

estimation.

IV. Performance

Based on early testing Big Blue is quick, agile, and all that we hoped it would be. It accelerates to
max speed very quickly and climbed up every incline we tried; It ascended an approximately 55° hill
without hesitation. We credit the tight, responsive controls to using four motors and having a low

center of gravity.

Unfortunately, this power comes with a consequence. Our battery life is only 20 minutes per pack.

We have two battery packs onboard bringing the total to 40 minutes of battery life.

Due to restrictions of the competition, the speed is limited to 5 mph, but we are capable of about 10

mph. The motor controller governs the max speed by monitoring the encoders.

Performance Results

Speed 5 mph

Reaction Time Near Instant

Battery Life 20 minutes/pack (2 packs onboard)

Ramp climbing 55° +

Object Detection Distance 5 meters for lines/20 meters for objects

Waypoint accuracy 30 cm

V. Vehicle Costs

Component Retail Cost Team Cost
Dell Latitude D830 Laptop $1,200 $0
Novatel Propak V3 DGPS $8,000 $3,900
SICK PLS-101 $5,000 $215
NPC Motors $1,144 $572
Batteries $250 $250
PNI TCM-2.6 Digital Compass $850 $0
Panasonic 3CCD color camera $800 $0
Custom Electronics

Motor Controller $725 $525

Remote Board $250 $250

Power Supply $260 $260
US Digital E4 optical encoders $150 $150
Mechanical Parts (Metal, hardware) $1,250 $1,250
Anodizing $100 $100
Total $19,980 $7,472

VI. Conclusion

We believe out vehicle has been created to the best of our abilities. We are proud of what has been
built and see it as a major accomplishment over our vehicle from last year. In future years we would
like to put more effort on vision and navigation algorithms. Cheaper solutions for object detection
can be obtained using multiple cameras, however it requires a significant amount of extra work. We
plan to use the same mechanical design for at least one more year as we are very happy with how

ours turned out.

UB Robotics would like to complete JAUS level 3 if time permits.

Acknowledgments

We would like to thank all of our sponsors: Novatel, Omnistar, PNI, Advanced Circuits, Sunstone
Circuits, UB Student Association, Sub Board-I and the Energy Systems Institute (ESI) at the University
at Buffalo for their product and money donations. A special thanks goes to our club adviser, Dr.
Jennifer Zirnheld, for her continued support, as well as Kevin Burke, Jon McMahon and the rest of

the ESI staff for all of their help.

