STATE UNIVERSITY OF NEW YORK AT BUFFALO
Department of Mechanical and Aerospace Engineering

Mapping and Remote Operation of the
Lego Mindstorms NXT Platform

by

Colin Lea

Funded by

Gustav and Greta Zimmer Research Scholar Award

NSF Research Experience for Undergraduates

Advisor: Dr. Venkat Krovi
Fall 2008

Table of Contents Pages

Mapping and Remote Operation of the Lego Mindstorms NXT Platform

Abstract 3
Chapter 1: Introduction 4
1.1 Background 4
1.2 FIRST Robotics 5
Chapter 2: Equipment and software 7
2.1 Software 7
2.2 Remote Control 8
2.3 Goals 9
2.4 Setting up the Lego Mindstorms NXT 11
2.5 Programming the NXT in Matlab 11
2.6 Programming the Wiimote in Matlab 12
Chapter 3: Mechanical Design 14
Chapter 4: Software Design 18
4.1 Version History 18
4.2 Feature Implementation 21
4.3 Modes 28
4.4 Object Avoidance 34
Chapter 5: Internet Operation 37
5.1 Server 37
5.2 Webpage 38
Chapter 6: Final Remarks/Future Work 41
Appendix A: Bluetooth Setup 42

Appendix B: Internet Operation Code

nxtControl.php 53
update.php 54

Due to length of Matlab code, it is available separately.

Abstract.

This experience report documents my application of the Lego Mindstorms
NXT robotic platform and Nintendo Wii controller within Matlab to create a
mapping and remotely operated system. Using sensor inputs from the NXT I have
created a system to identify obstacles in front of the robot and store them to
memory. With this information, the NXT is capable of avoiding previously detected
obstacles. Mapping is a method of storing information about a location. The robot
can be used to survey an area and provide feedback to the computer. Emphasis has
been put on user input. It is possible to control using (1) a Nintendo Wii controller,

(2) a graphical user interface, and (3) via the Internet.

Chapter 1: Introduction

Creating a robot from scratch takes a lot of time, money, intelligence, and
craftsmanship. To develop, manufacture, and code a whole platform by your self is
beyond the scope of a one-semester project. In order to focus on a single aspect of
robotics one must isolate their area of interest. This could involve creating a robotic
vehicle, creating a system of electronics, or in my case programming a mostly

prebuilt robotic platform.

1.1 Background

There are many robotic platforms on the market. Many of these are sold as
kits that allow users to create a robot of their own design. The Lego Mindstorms
NXT and Vex Robotics Design System are such platforms. Included in these Kkits are
wheels, motors, sensors, connectors, and other pieces. These types of kits enable all
sorts of robots to be made. Other robotics platforms can be less modular, only
allowing for a few configurations. For example, the Parallax Scribbler’s body cannot
be changed. It uses a Basic Stamp 2 plus sensors to allow users to program
movement of the robot. Different robotic platforms are meant for different levels of

control and functionality.

Figure 1 Lego Figure 2 Vex System

Figure 3 Parallax
Mindstorms NXT Scribbler

My project stemmed from interest in the FIRST Tech Challenge (FTC). This is
a six-week competition during which teams of 10 high school students plus mentors
work to compete in a robotic competition. Teams use a Lego Mindstorms NXT,
motors, and other parts to create a semi-autonomous robot able to carry out a task.
My goal was to get more familiar with the system and hopefully act as a student

mentor for a local school.

1.2 FIRST Robotics

The goal of FIRST is to get kids interested in science, technology, engineering,
and math (STEM) through robotics competitions. Different challenges exist for
different ages. The Junior FIRST Lego League (Jr.FLL) is for ages 6-9 and involves
basic research on a topic and modeling using Lego bricks. The FIRST Lego League
(FLL) is for ages 9-14 and involves designing and building an autonomous robot
using the Lego Mindstorms NXT platform. The students compete in a “friendly”
competition where learning is stressed over winning. The FIRST Tech Challenge
(FTC) is for high school aged students and is like a more advanced version of the
FLL. It uses the Lego Mindstorms, motors, and other mechanical pieces to compete
in a competition. The FIRST Robotics Challenge (FRC) is also for high school
students and uses a National Instruments Compact Rio platform, motors, and other

parts to create an autonomous robot. This is much more costly than the FTC. The

students are expected to do the work but adult and student mentors should be

available to guide and teach.

A few problems surfaced that thwarted my initial efforts to get involved with
the FTC. First, there are no local teams currently competing - the closest school is
more than an hour away. Second, the kickoff was September 13t which didn’t allow

enough time to try to organize a team at a local school.

Because of my initial research into FIRST I was already familiar with the
capabilities of the Lego Mindstorms NXT platform. Combined with the large user
base and plethora of online documentation the NXT was a suitable platform to do

my own research.

Chapter 2: Equipment and Software

The NXT has an open programming interface which makes it relatively easy
for developers to interact. Lego offers a software development kit (SDK), hardware
development kit (HDK) and Bluetooth development kit (BDK) on the official
website. This means that with the necessary skill anyone can build their own
language that is capable of working with the NXT platform. Developers have taken
full advantage of the SDK and HDK allowing much greater capabilities and more

advanced robots.

2.1 Software

One of the advantages of the NXT is its large support in the software
community. Independent developers and university students have created many
programming languages and libraries to interface with the NXT. The software
included is inadequate for anything more than basic manipulation and data
acquisition. Several languages have been created that take advantage of C and Java
libraries. While there are dozens of working languages, only a handful of them
continue to have much support. Some more popular ones include RobotC, LeJos,

Matlab and the Labview Toolkit

Likewise, because of Lego’s open hardware development kit, companies are able
to create additional sensors and motors to integrate with the Mindstorms NXT.

HiTechnic, Vernier, and other companies sell additional adaptors for proximity

detection, orientation and color sensing. Vernier offers many sensors for general
data acquisition such as a flow rate sensor, barometer, and thermocouple. It is even
possible to create your own sensors and attach them using a connector available

through Lego.

2.2 Remote Control

While the Mindstorms NXT is fully capable of working autonomously, it is not
always ideal. There are many solutions available to provide such control. However,
using Matlab limits the number of usable controllers. Any unsupported controller
would require a new library to be written. There are some popular devices that have
lots of support and documentation online. For convenience, I chose something that

is already supported.

One popular device is the Nintendo Wii controller (Wiimote). It features an
ADXL330 3-axis accelerometer, a PixArt optical sensor for infrared detection, a

direction pad, and 7 pushbuttons.

It is also capable of connecting with a “Nunchuck” controller attachment. This

Figure 4 Nintendo Wiimote Figure 5 Nintendo Nunchuck

provides an additional 3-axis accelerometer, an analog stick for directional control,
and two pushbuttons. The Wiimote has gained a lot of attention over the last couple
of years. While nothing about the controller is completely revolutionary, its
significance is in bringing motion control into the eye of the public. Because of its
compact, capable design and inexpensive price, the Wiimote is being used in many
robotics labs across the world. For example, research on 3D tracking for desktop
virtual displays was recently done by Graduate students at the Human-Computer

Interaction lab at Carnegie Mellon?.

The unique abilities along with available Matlab drivers and documentation

made the Wiimote a practical choice.

2.3 Goals

After tinkering with the NXT and Wiimote for a week or so [devised a
general goal for what [wanted to accomplish. I sought to take advantage of what
both products had to offer. I had experimented with the accelerometer data from
the Wiimote but wanted to implement something on a more broad level. I wanted
something that could take information from the Wiimote, manipulate it, take
information from sensors on the NXT, and combine the data in Matlab to perform a
function on the robot. I also wanted to be able to take information from the

accelerometer and other control buttons on the Wiimote as well as take input from a

Lhttp://www.cs.cmu.edu/~johnny/projects/wii/

10

graphical user interface (GUI) on a computer allowing for possible future
development using networking to control the robot from a second computer. With
all of the data I wanted to show the user what was happening with the system on the

GUL

[decided to create a system for mapping and remote control. The goal was to
create a system that depicted where the robot was in relation to obstacles. The map
is used to store information about an area such as the location of obstacles.
Obstacles should be able to be inputted either by the user or detected by the robot. I

wanted three modes:

* WiiNav: Controlled using the data from the accelerometer on the Wiimote

* Fine Control: Control using the directional pad on the Wiimote or using
controls on the GUL It allows for the robot to turn left, turn right, go forward
a set distance, and go backward a set distance.

* Point Find: The user inputs a point and the robot has to move to that location

At the end of creating this system, I decided to set up remote control over the
Internet. I had little experience with web development so I learned how to set up a

server, script with PHP, and control this input through Matlab.

[started with basic knowledge of Matlab from an intro programming for non-
computer science engineers course from freshman year (EAS230). Accomplishing
my goals not only required solving the problems of controlling the NXT but also

learning Matlab in greater detail.

11

2.4 Setting up the Lego Mindstorms NXT

One advantages of the NXT is its ability to communicate with a computer
over multiple protocols. It is possible to connect using USB as well as via Bluetooth.
With NXT-G it is possible to download programs directly to the NXT unit using
either method. Being able to use Bluetooth eliminates problems with wires and
makes testing more convenient. Unfortunately, current Matlab libraries only
transfer data over Bluetooth. I had several problems getting the NXT set up on my
Macbook Pro. Detailed documentation of how I got it to work is located in Appendix
A. While it worked sporadically with the Bluetooth card in my laptop, my best

results were with using a Broadcam adapter.

2.5 Programming the NXT in Matlab

While Mathworks, a company renowned for its excellent help system, created
the Matlab NXT library, there is not a lot of documentation about how to control the
robot. The documentation that does exist does not provide enough detailed
information. It would be helpful to have previous experience handling COM ports.
The best place to get started is on a blog entry written by a Mathworks employee?Z.

Basic controls are listed below.

2 http://blogs.mathworks.com /loren/2008/06/30 /lego-mindstorms-nxt-in-teaching/

Function

Description

NXT = legoNXT ('COM18")

Initiates NXT handle (COM#
determined by the Bluetooth)

Left Motor = NXT.portB

Initiates variable to output port.

Output port is “A” “B” or “C.”

Start (Left Motor, p)

“w__ 1

Starts motor with power “p

“w__»

where “p” is a number 0-100

Stop (Left Motor)

Stops motor

Ultrasonic = NXT.portl

Initiates variable to input port.
Input portis “1” “2” or “3.”

set (NXT.Port4, 'type',
'distance');

Initialize ultrasonic sensor

Ultrasonicdata =
getdata (nxt.Portl)

Get input data

2.6 Programming of a Wiimote in Matlab

Two prominent Matlab libraries for the Wiimote are fWlIne and WiiLAB.
fWlIne is an open source project that hasn’t been updated recently. WiiLAB was
developed during a summer undergraduate research program sponsored by the
National Science Foundation at Notre Dame University. WiiLAB provides ample
control through functions that enable accelerometer data acquisition, button

readings and infrared detection. It is also capable of gathering data from the

“Nunchuck” add-on.

12

13

M-files located in the Wiilab_Matlab folder are well documented and provide

enough information to start using the Wiimote with little additional research. Basic

controls are shown below.

Function

Description

initializeWiimote ()

[nitializes Wiimotes.

isWiimoteConnected ()

Returns true if a Wiimote is connected.

[x v z] = getWiimoteAccel ()

Gets accelerometer data. It is a range
from -10 to 10. Values are returned to

“u_n «u__»

variables “x” “y” and “z.”

isButtonPressed ('A")

Checks if button on Wiimote is pressed
(Available buttons: A, B, ONE, TWO, UP,
DOWN, LEFT, RIGHT, Minus, Plus, Home)

14

Chapter 3: Mechanical Design

The Lego kit includes a manual with instructions on how to build a robot
capable of moving around and swinging a golf club-like Lego piece. I put this
together rather quickly so that I could start setting it up in Matlab. At the beginning I
was interested in the autonomous aspect of the project more than the mechanics of
the physical robot. The robot had a myriad of sensors but did not have great
mobility. It featured two motors to move the robot, one motor to swing the golf
club-like piece, a bump sensor on the back to stop it if it ran into a wall, an audio
sensor in front to detect noises, a light sensor to detect brightness levels, and an
ultrasonic sensor pointed forward to detect obstacles in the robot’s way. |
constructed this robot without any of my own additions so I could begin

programming.

Figure 5 Initial Design (http://www.symbian-freak.com)

Problems arose before I even started developing my mapping system. While
testing, [noticed that the robot did not turn well. It was inconsistent and wobbled

some of the time. The drive train worked using two motors controlling the front

15

wheels and a third uncontrolled wheel in the back. Unlike an omni-directional
wheel, the back wheel must be aligned with the direction of the turn in order to
rotate effectively. If the wheel was perpendicular to the turn, the movement would
not be smooth and the whole robot would wobble. Instead of a rolling motion from
the wheel, it increases friction, which creates drag on the vehicle. This is a big
problem because the wheel is perpendicular every time that the robot moves
forward or backward. Even if the wheel is at the correct angle to turn, there are

problems when the robot then has to move forward.

The problem was fixed by changing the whole design of the robot. I opted for
a skid-steer drive train and only one additional sensor. Skid-steer works by isolating
the left and right sets of wheels. The front and back of each side are connected so

both wheels move simultaneously. This moves the center of rotation inward,

16

allowing the robot to turn on a point. This solution is not perfect but allows for good

movement using only two motors.

Normally axles are connected with chains held on by gears. The Mindstorms
kit does not come with anything like this so I had to come up with my own solution.
[attached rubber bands to hubs fixed to each axle and got desirable results. It does
not work perfectly but is satisfactory for my needs. Rubber bands offer more slack
than chains because the only thing holding them in place is friction. On my robot, the
motors are attached to the front axles. By experimenting, I found that the front and
back wheels moved at the same rate as when it was driven by the motors. If you
manually turn the back wheels, the front wheels move at a slower rate. This is

because the motors add a greater resistance force than the frictional force in the

rubber bands.

In larger vehicles, a skid-steer drive train can cause excessive wobbling.
Because my robot has a low weight to size ratio I have not noticed significant

problems.

Figure 8 Final Design

17

18

Chapter 4: Software Design

The final program was the product of several iterations of code. Each
revision used a new approach and brought new insight into how to use Matlab more
effectively. I will briefly explain the different iterations and then talk about
individual components of the final program. A diagram of how the parts of the

system work is below.

GUI

Wiimote #— | Matlab <™ Internet

-

NXT

Brain
Utrasonic Left Right
Sensor Motor Motor

Figure 9 System Overview

4.1 Version history

The program started from the code [wrote while playing around with the
NXT and Wiimote. Everything was crudely implemented. I had a system to control

the motors on the NXT based on the accelerometer data and direction pad (d-pad)

19

from the Wiimote. Accelerometer data from the Wiimote and the position of the
robot were displayed on separate figures. All of the code was kept in one Matlab file,

which ran continuously with the use of a while-loop.

Version 2 —-Function based

[realized how inefficient and unreadable the code was in some areas. |
removed much of the code from the main Matlab file and created routines that were
stored in new m-files. I had a main while-loop that called separate functions for

different operation modes. I also added comments to the files for better readability.

Version 3 - GUIDE based

At this point, I was concerned about overall usability. The main structure of
the program had been created but it wasn’t intuitive and relied on the command line
for relaying information to the user. [spent a lot of time learning about how to
create GUIs in Matlab so I could create one unified interface. Matlab’s Graphical User
Interface Design Environment (GUIDE) helps simplify the creation of GUIs. It
included several types of buttons, sliders, and other controls that allow the user to

interface with the program.

20

File Edit View Layout Tools Help

Nl $2B9 ¢ | sBHhd D% P

-
Push Button
b
©]=]
Edit Text Panel
[Check Box O Radio Button
Static Text
Pop-up Menu v T 4 » |.
I i

Current Point: [12, 88] Position: [301, 81, 114, 19]

Figure 10 GUI Design Environment

The problem with this was that it required a complete overhaul of my code.
[t works by running “callback” functions whenever a button is pressed. There is a
function for initializing variables and commands and then the program runs through
the rest of the code repeatedly until it is stopped. Instead of running through a
while- loop, checking whether certain modes have been selected, the program is
interrupted by button presses. My biggest problem was allowing for control through
the Wiimote and onscreen at the same time. I couldn’t poll the Wiimote using a
while-loop because it would essentially stop the program from processing other
information. This required the implementation of a timer. A timer is set to run a
certain function at a set interval. For example, my timer checks for Wiimote button

presses every 0.5 seconds.

Version 4 - Internet Control

21

The last revision deals with remotely accessing the robot over the Internet. I

set up a server in Windows that can be accessed from any Internet connection. This

is discussed in detail in chapter 6.

4.2 Feature Implementation

4.2.1 Handle

The handle is the basis of any graphical user interface created with GUIDE. It

acts as a structure for all information in the interface. In my program, everything is

stored in the handle including the map, robot information, and button data. The

stored variables are in the table below.

Variable Description
clearMap Button: Clears current map
Map Plot of map
DistanceText Text: shows value of distance slider
DistanceSlider Slider: Controls distance robot travels
Turn_Right Function for turning right
Turn_Left Function
text10 Text: “X position”
ExitMode Function
Heading Text
Ypos Text
Xpos Text
WiimoteControl Function
ExitProgram Function
RIGHT Button:
LEFT Button:
DOWN Button:
UpP Button:
text5 Text: “Robot Position”
text11 Text: “Y position”
text3 Text: “Distance”
Ultrasonic Plot
WiiY Plot
text2 Text: “Y Axis”
textl Text: “X Axis”

22

WiiX Plot

internet_mode Function
PointFind_indicator Indicator
Internet_indicator Indicator
WiiNav_indicator Indicator
Point_Find_Mode Function
NXT_Connected_indicator Indicator
Wii_Connect_indicator Indicator

text4 Text: “Wiimote Connection”

text6 Text: “NXT Connection”

output Unused part of handle

MODE Variable: 1 for WiiNav, 2 for Fine Control, 3 for Point Find
EXITPROGRAM Variable 1 on exit, 0 while running

NXT_Connect Variable: true if NXT is connected

Lmotor Variable: Stores the port the left motor is attached to
Rmotor Variable: Stores the port the left motor is attached to
wii: [1x1 Wii] Wii structure; includes accelerometer data
map_length Variable: previously defined length of map
map_height Variable: previously defined height of map

robotX Variable: Current X-coordinate

robotY Variable: Current Y-coordinate

robotH: Variable: Current heading

object_Up Avoidance: “1” if object above the robot

object_Down

Avoidance: “1” if object below the robot

object_Left

Avoidance: “1” if object to left of robot

object_Right

Avoidance: “1” if object to right of robot

object Avoidance: “1” if object within surrounding area of robot
Clk Variable: stores previous time; used to find change in time
T Timer: Gets data from wiimote and runs wii functions
internet_timer Timer: Gets information from

timelnit Variable: Gets cputime at initialization

The process of using the handle during a callback is unique. At the beginning

of the callback it must be reassigned to a new variable. To get the information you

must use the function handles = guidata (hObject) . Variables can then be

accessed in the format handles. [variable]. For example, the X position of the

robot would be handies. robotx. At the end of the callback the handle must be saved

using the function guidata (hObject, handles) .

4.2.2 Initialize

At the beginning of the program the NXT, Wiimote, timer, map, and variables

must be initialized. These are all assigned to the handle to be stored for later use.

23

For testing purposes there needed to be a way to use the program without the NXT
or Wiimote connected. Without some method of detection, there is an error and the
program stops. If the NXT is detected, motors and the ultrasonic sensor are

initialized. If it is not the motors must be set to dummy values.

try
NXT = legoNXT('COMl6') ; %try to initialize the NXT
handles.Lmotor = NXT.portB; %assign ports to left and right motors
handles.Rmotor = NXT.portC;
handles.NXT Connect = 1; %used to check for NXT in routines

set (NXT.portB, 'StopType', 'brake'); %motors stop immediately
%$instead of coming to a rolling stop

set (NXT.portC, 'StopType', 'brake');

set (NXT.Portd4, 'type', 'distance'); %$initialize ultrasonic sensor

start (wii.Lmotor, 0); %$initializes motors to a speed of O
start (wii.Rmotor, O0);

catch E1 % 1f the NXT is not connected set dummy variables
disp ("NXT not connected')
set (handles.NXT Connected indicator, 'BackgroundColor', 'r')

handles.NXT Connect = 0;
handles.Lmotor = 0;
handles.Rmotor OF;

end

The command initializewiimote () takes care of errors and does not cause

any problems. Other variables are assigned in the following format.

handles.wii = Wii(handles.Lmotor, handles.Rmotor, 2, -4);
handles.map = Coordinates (70, 50, 30, 10); %(Size X, Size Y, X robot
position, Y robot position)

24

4.2.3 Map

2 INXT_GUI

Wiimote Connection:
NXT Connection:

X Position:
Y Position:
Heading:

Object in front of robot. Move ancther way

Figure 11 GUI overview

The Map is arguably the most important part of the GUI. It is used to show
where the robot is, where obstacles are, and where the boundaries are. All of the
information for the map is contained in a double-indexed array with a predefined
width and height. Zeroes and Ones are used to identify where obstacles are located.
The map is printed to the screen using the p1ot () command. The whole map is only
printed at the start of the program and when the “Clear Map” button is called.
Whenever an object is found or the robot moves the map’s array is modified but

only the new point is plotted. This saves processing time because the map doesn’t

25

have to reload every time a new event occurs. Blue diamonds signify obstacles and
borders and red circles signify the position of the robot. Previous robot states

remain shown to remind the user where the robot has already been.

While testing, one annoyance I found was resetting the program whenever
the map became cluttered or [moved the robot. In order to clear the map I had to
exit the program and restart, a process that takes at least 10 seconds. This can be a
hindrance to anybody playing with the robot in multiple environments or testing it
with different obstacles or in different scenarios. This is why I included the function
“Clear Map.” This button zeroes the map’s array, adds a new border, and redraws

the map.

Obstacle avoidance is one of the main reasons for creating the mapping
system. When I didn’t have the NXT connected, | needed a way to test if the robot
could successfully evade objects. I also thought it would be useful to be able to add
known objects to help eliminate errors in the object detection system. | wanted a
system that was quick and intuitive to add objects on the fly. The method I
implemented allows you to click anywhere on the map and it will immediately add
an object in that location. When you click, the figurel windowButtonDownFcn ()
callback is initiated. It gets information from the figure window to find the position
of the mouse on the map. This value is turned into an integer to be stored in the

map'’s array. The point is then plotted in the figure.

26

pos = get (H.Map, 'CurrentPoint');

(
x = uint8 (pos(l)); %uint8 used to get integer value
y = uint8 (pos(1,2));
H.map.map(x, y) = 1;

plot (H.Map, x,y, 'bd")

One feature [would like to see added is an expandable map. Currently when
the robot goes outside of the boundary, it creates an error. This is the reason [added
boundary markers. A new numbering system would have to be used because an

array does not accept negative numbers.

4.2.4 Data graphs:

The graphs provide visual output of data from the Wiimote. It is useful for
testing and monitoring inputs. It displays the last 10 seconds of data. Originally, I
plotted the X and Y values from the Wiimote and the Ultrasonic data from the NXT.
The Ultrasonic data did not appear to be useful so I replaced it with the Z values

from the Wiimote. The Z data is not currently used but might be in the future.

Figure 12 GUI graphs

27

4.2.5 Timer:

The timer is used to check the Wiimote for information every 0.5 second. If
the “A,” “B,” or “One” buttons are triggered it switches the mode. I had trouble

setting the timer up. The function I used was handles.T = timer ('TimerFen',
@(h, ev) timer callback (hObject, eventdata), 'execution', 'fixedRate',

"Period', .5). Itmustthen be started using start (handles.T). My problem
had to do with the input arguments. The timer checks for the current mode and runs
Wiinav and Fine Control when necessary. When the program quits the timer must

be stopped and deleted using stop (handle.T) and delete (handle.T).

4.2.6 Other GUI Elements:

Several indicators are in place to increase usability. When a mode is selected,
the corresponding light turns from red to green. This design aspect is simply used to
remind the user of the current mode. The robot’s position is also used to give an

exact location so the user doesn’t have to estimate a value based on the map.

The “Exit Program” callback stops running processes and deletes the figure.
It changes the handle. MODE to “0” which stops other modes from running. It stops

and deletes timers that otherwise would continue in the background.

28

4.3 Modes:

4.3.1 Wiimote control

Controlling the NXT through the Wiimote was one of my first goals. Using
Wiilab, it was easy to acquire sensor data from the Wii. [wanted to be able to
control the robot using both accelerometer data (allowing the user to tilt the
controller to move) and move by pressing directions on the d-pad. Because there
are multiple options there needs to be a way to access each mode. Every 0.5 seconds

Matlab polls the Wiimote for button data.

If the “A” button is pressed it enables “Wii Control Mode.” When this is
enabled, Matlab repeatedly polls the Wiimote for accelerometer data. Figuring out
how to best use the accelerometer data took lots of testing. Many ways of
manipulating the NXT motors with this data makes movement awkward or unstable.
For example, if you use the X-axis acceleration for turning control and Y-axis for
forward/backward controls it is not easy to go straight. It is hard to keep your hand
steady enough that you don’t drift to the left or right. To counter this I implemented
thresholds to the turning speeds. If the X value is below a threshold it is disregarded
and if it is above the threshold it adds the value to one of the motors. The threshold
is 6 on a scale of 0-19.6 (2*Gravity).

When going straight, the power of both motorsissettovel R = vel L =
Wii.Y value*y multiplier.The y-multiplier is 4 and was set empirically. The x-
multiplier is 2. The robot’s location on the map is changed with the function

H.robotX = (H.robotX + v*cosd(H.robotH)*dt) where v is the average velocity

29

of the left and right motors, cosd returns the cosine of the function in degrees, and
dt is the time since the last function.
While turning left the power in each motor is given by ve1 1 =
(Wii.Y*y multiplier) + (Wii.X*x multiplier - 6)) and vel R =
Wii.Y*y multiplier. Turning rightis the reverse.
While turning, the change in angle is calculated by dh = atand((vel R-
vel L)/width) thisis added to the current angle by the function 1. robotH =
mod ((H.robotH + (dh*dt)), 360).The use of “mod” reduces the angle to a value of

0-359. This angle is used to find the new X and Y coordinates of the robot.

Ay

ﬂﬂ:ﬁi

3O

A Width =
... |

NXT

Figure 13 Geometry for Change in
Heading

One problem with “Wii Control Mode” pertains to the mapping system.
Because the NXT can move at any angle and at any speed, there are sometimes

problems where the actual location of the robot drifts from the mapped location.

30

This is in part due to wheel slippage and errors vary with the floor’s surface. Adding
a digital compass could help eliminate part of this problem.

If the “One” button is pressed it enables “Fine Control.” In this mode, users
can move the robot forward or backward or turn it left or right using the d-pad on
the Wiimote. As with “Wii Control Mode,” Matlab repeatedly polls the Wiimote for
button presses from all directions on the d-pad. When pushing “Up” or “Down” the
robot moves a distance of 5 centimeters. “Left” or “Right” turns the robot 90 degrees
counterclockwise or clockwise. This uses the same routines talked about later in the

“Fine Control” section.

Regardless of which mode it’s in, Matlab also polls the “B” button. The “B”
button is used to exit a mode. While in “Wii Control Mode” exiting immediately stops

the NXT. While in “Fine Control” the previous action is finished before stopping.

4.3.2 Fine Control:

This mode accepts input from the GUI and Wiimote. It’s use it to accurately
move the robot a defined distance. By default, the robot moves 5 cm at a time. This

can be changed with a slider on the GUI but is unchangeable via the Wiimote.

31

) INXT._GUI

L i H ‘Wiimote Connection: T

NXT Connection: —

On the wiimate press A for full wii control, 1 for refined control, or 2 for point finding. Press B to leave m|

Figure 14 Distance Slider

On the Wiimote, the d-pad controls are relative. The “Up” button calls the
forward() function, “Down” is backward(), “Left” is turn_Left, and “Right” is
turn_Right(). For example if the robot is turned left, pushing “Up” will move it to the
left on the map. On the GUI, controls are absolute. Each button runs its own callback
function. The orientation is checked and if it is not facing the direction chosen then it

turns left before moving forward.

% —--- Executes on button press in UP.
function UP_Callback (hObject, eventdata, handles)

H = guidata (hObject); %handle

while (H.robotH ~= 90) %if the heading isn’t 90 degree turn left
H = turn Left (H);

end

H = forward(H); %move forward
plot (H.Map, H.robotX, H.robotY, 'or') %$plot the new location

guidata (hObject, H); %$save the handle

Because it is non-holonomic (meaning it can only move in the direction that

it is pointed), anytime the robot moves a distance it must use the forward or
backward function. forward() and backward() get the value from the Distance
slider to determine how long to turn the motors on for. On my testing surface the

time function was determined experimentally to be time = .094*distance. The

multiplier varies depending on the floor’s texture.

4.3.3 Point Finding:

In “Point Finding “ mode, the user inputs a pair of X and Y coordinates and

32

then the robot moves to that location. It uses a basic algorithm to find the new point.

The general outline of the algorithm is as follows.

while

H

end

(H.robotY ~= H.yInput) || (H.robotX ~= H.xInput)
% ~ while the robot isn’t at this location, do the following

$if point is higher than current robot position:
if (H.yInput > H.robotY) && H.object Up ==

while (H.robotH ~= 90) %while not facing up, turn
H = turn_Left(H);

end

H = forward(H); %move forward

$if point is lower than current robot position:
elseif (H.yInput < H.robotY)&& H.object Down == 0

while (H.robotH ~= 270) %while not facing down, turn

H = turn Left (H);
end

H = forward (H);

$if point is more left than current robot position:
elseif (H.xInput < H.robotX)&& H.object Left == 0
while (H.robotH ~= 180)%while not facing left, turn
H = turn Left (H);
end
H = forward(H);
$if point is more right than current robot position:
elseif (H.xInput > H.robotX)&& H.object Right ==
while (H.robotH ~= 0)%while not facing right, turn
H = turn Left (H);
end

forward (H) ;

end

33

One known problem is the possibility that the robot can get cornered into
obstacles. The problem occurs when there are objects on the two faces closest to the
endpoint. Further investigation into a better algorithm would provide better results
and fewer problems. In the image below, the program has crashed because there is

no way for the robot to go.

Figure 15 Point Find Error

34

4.4 Object Avoidance:

Avoidance is implemented with a function that is run every time the robot

moves. Its purpose is to prevent the robot from running into obstacles. It checks a
square area equal to twice the travel distance plus one in length and width. By
default this is an 11x11 centimeter area; the robot moves five spaces at a time and
5x2 + 1 = 11. The function checks for any non-zero number in the map’s array.
Because only objects in the way of the robots path need to be avoided there needs to
be a way to differentiate which objects matter. To do this [added different zones
within the avoidance function. The image below shows the four zones. In the code,
the zones are handle.object Left, handle.object Up, handle.object Right,

and handle.object Down.In this example object Left, object Up,and

object Right equal 1. Whenever there is an obstacle anywhere within the zone the

value is 1, otherwise its value is 0.

The avoidance function is called before every movement. The call is located
in the forward, backward, turn_left, and turn_right m-files. My control system is
based on the robot’s current heading which created problems. Initially if there was

an obstacle above the robot and you were moving right, the system would think the

35

object was in your way. The system was treating the forward and backward

commands as absolute directions. To fix this I used a switch in both of the routines.

switch handle.robotH % robotH is the robot’s heading in degrees
case {0, 360}
obj = handle.object_Right;
case 90
obj = handle.object_Up;
case 180
obj = handle.object_Left;
case 270
obj = handle.object_Right;
otherwise
obj = handle.object;
end

The variable ob7 is assigned to the direction of the robot. This way the

command is only checking for objects in the way of it’s path.

One thing [would like to see done is better integration with the point finding
function. Currently the avoidance function is called every time the robot moves. If
there are obstacles in the way of the robot’s path, it must avoid them; this increases
the time it takes to travel to the endpoint. If avoidance was calculated before any
movement then it could choose to take a more efficient path. In the example below,
the red dotted path shows the current path the robot takes to move to point (60,40).
The green line depicts a better path using only 90-degree turns. The yellow line is

the overall most efficient path.

Figure 16 Optimal Path

'
'
'
'
hl
'
'
'
'
"
'
'
'
'
-
'
'
'
'

36

37

Chapter 5: Internet control

After completing the structure of the Matlab program, I pondered the idea of
controlling the robot over the Internet. I had little experience with web
development so the end design comes from a somewhat basic approach. During the
process, [learned how to create a web server hosted on my laptop and how to use
HTML and PHP to create scripts for accessing and writing data to files and

controlling user input.

»/Apache Web
Server
Hosted on
Executed by
Screencap PHP Script
A
Edits text
Renders

Matlab |—~2295%! Text file

5.1 Server

Apache HTTP Server is an open source, commercial grade implementation of

an HTTP web server (http://httpd.apache.org/ABOUT APACHE.html). It is free and

easy to set up for Windows and Linux. It runs in the background and allows anyone

to connect to files hosted on my computer over the Internet.

PHP is a scripting language for web development. These scripts can be

executed by button presses or other inputs from a webpage. With PHP it is possible

38

to write to files on the host computer. In order to enable these scripts, PHP must be
installed on the server. I followed this guide for setting up Apache and PHP
(http://thecodecentral.com/2007/03 /24 /setting-up-your-own-web-server-with-

apache-http-server-php-and-mysql-on-a-windows-machine#change_dir).

5.2 Webpage

[wanted the robot to move with input over the Internet. I added two
functions: Fine Control and Point Find. Using HTML I added buttons for “Up,”
“Down,” “Left,” “Right,” as well as “X” and “Y” inputs for Point Find. To the right of

the controls is a printout of the GUI from Matlab.

Scrip
Matlab GUI image

lInput| |Input| [Script

39

Each of the buttons opens update.php and posts the direction or coordinates
selected. update.php reads the action and re-writes text file update.txt in the server’s

directory. An example of one of the buttons is below.

<form action='update.php?action=Up' method = "post">
<input type="submit" value="Up">

</form>

The “Internet Mode” button on the Matlab GUI starts a timer that checks this
file every second. The format of the file is [U][D][L][R] [X][Y] [Comment]
[Timestamp]. If the “Down” button is pushed the text might read 0100 00 00 (UP,
DOWN, LEFT, RIGHT | X,Y COORD)1231101682. Matlab would then run the Down
button function. The function saveas (H.Map, 'C:\...\htdocs\map.jpg') printsa

JPEG image of the GUI to a file on the server.

J NXT| Control - Mozilla Firefox
File Edit View History Bookmarks Tools Help

6 - C X & (‘http:/[24.53.IDB.ZBUInxt(Dntrul.php > -‘ ‘v‘;mag\e

2] Most visited P Getting Started 5. | Latest Headlines ﬁ Object Oriented Progr... Anywhere PE Viewer -...

On tha wiimote prass A for ul wi cartrod, 1 for

Stopped

40

Refreshing the image for the user became a problem. Due to the way
websites cache images, the GUI didn’t update after every movement. A combination
of solutions provided on web forums fixed the issue. I set Javascript to run a
function that reloads the image after 2 seconds. I had to trick the page into thinking

it was loading a different image by appending “?r=1" to the URL of the image when it

“w_»

is first loaded and “?r=2" when it is reloaded 2 seconds later. The letter “r” is

arbitrary.

<script language="Javascript">

function reloadPage ()
{
document.images[0] .src="map old.jpg";
document.images[0] .src="map.jpg?r=2";
}
setTimeout ('reloadPage () ', 2000);

</script>

41

Chapter 6: Final Remarks/Future Work

Over the course of this project I have become much more proficient at Matlab
and have a better understanding of how to mix hardware and software for remote
operation of a robot. I think it has given me some of the basic skills necessary for
more advanced research. In the future I would like to expand on this work, possibly

implementing the following ideas:

* Attach a Wiimote to the robot. This allows for dead reckoning, which would give

more accurate location information.

* Implement a better algorithm into Point Find mode so the robot doesn’t get
stuck behind obstacles.

* Further refine the way the robot moves while controlling it with a Wiimote.

* Use other NXT sensors to detect other actions such as sound.

* Obtain a digital compass (available through HiTechnic) for more accurate
control.

* Use an additional Wiimote to create a 3D mapping system.

e Use additional robots to simulate a robot collective.

Creating this system has taken a lot of work but has been a fun experience
and has solidified my interests in robotics. The combination of mechanical and
computer engineering has long intrigued me, but until now, I have had little

experience mixing the two. I look forward to doing more work in this area.

42

Appendix A: Bluetooth Setup

The Lego Mindstorms NXT provides a way to interface with many computer
languages over Bluetooth. The NXT in theory should simply connect in Windows
and OS X with their native Bluetooth setup wizards. Due to a slew of possible
hardware configurations and bad on-screen communication on the NXT it does not
work exactly as intended. As evidenced by dozens of web posts, this problem is a
widespread issue without clear indication from Lego of what will work with

different hardware setups.

3.1.1 Hardware

Lego lists a series of Bluetooth adaptors3 that work with the NXT. All but one
of the tested adaptors is said to work. A much larger set of adaptors can be found
online* through various forums and websites. A large number of adaptors don’t

worKk so it is useful to check individual adaptors before buying.

My test system is a Macbook Pro (MBP), which is compatible with the NXT. I
am doing testing in OS X natively as well as in Windows XP through VMware Fusion
v2.0 and through Bootcamp. For users with OS X 10.5 (Leopard) there is an update
necessary to upgrade firmware®. I have found that the MBP’s internal Bluetooth
works some of the time, but in the end had the most success with an adaptor made

by Broadcom.

3 Bluetooth adaptors: http://mindstorms.lego.com/overview/Bluetooth.aspx
4 http://www.nabble.com/NXT-compatible-bluetooth-adapters-td5161928.html#a5161928
5 http://mindstorms.lego.com/support/updates/

43

3.1.2 Connecting - 0S X

Connecting through OS X is relatively simple compared to Windows. Before
trying to connect, you must close any previous connections with the NXT that you
might have with that computer. After closing any connections, you should reset the

NXT before trying to connect again.

To connect you must first open the Bluetooth devices window, which can be

found in system preferences. Click ‘Set Up New Device...

@0 Bluetooth
—

i‘ “Colin Lea’s MacBook Pro” is the name Bluetooth devices use to connect to this computer |‘
N
y (

|?| On fz’ Discoverable

Set Up New Device...

+

- v |
¥ Show Bluetooth status in the menu bar Advanced... f? [

44

Click ‘Continue’ and then select ‘Any Device’ when asked what device type. On the

next screen select ‘NXT’ and click continue.

e 0N Bluetooth Setup Assistant

Bluetooth Device Set Up

Searching for your device

When your device appears in the list, select it and click Continue. If you
don’t see it in the list, make sure it is "discoverable.” See the
documentation that came with your Bluetooth device to determine if you
need a specific passkey option. Otherwise, select it and click Continue.

Devices Type
NXT Unknown
Aaron’s Mac Portable

& Searching for devices - 2 found.

(Passkey Options... \ (Co Back_\ (Continue)

On the NXT it will ask for a passkey. It should default to ‘1234’. Click the
orange button for OK. It will then ask for the passkey on the computer. If you chose

anything other than ‘1234’ you will have to repeat the passkey on the NXT.

Click continue on ‘Gathering more information’. The next screen will say it

cannot find any information about the device. This is correct.

You should now be paired with the NXT. This is not the same thing as being
connected. At this point you cannot communicate between the platforms.
Connecting requires one more step. In the Bluetooth window on your computer go

to ‘Edit serial ports...’

“Colin Lea's MacBook Pro” is the name Bluetooth devices use to connect to this computer

™ on # Discoverable
NXT Type Unknown
- Not Connected Services None

Paired | Yes
Connected @ No

-+ -
Configure this device...
™ Show Edit Serial Ports...

Show More Info

(Rdvanced) @

45

Click the ‘+’ to add a serial out. By default the device service should be ‘DevB’.

If it is not, change the service type.

CoIJ 9 NXT this computer

M O Select a serial port outgoing to the device to modify its settings

On | Name Device Service

Port Settings:

Name:
Protocol: Modem 4
Service: Dev B 4
" I = l LAl [Require pairing for security
! o | f
MShow Blueto I 1 Show in Network Preferences || ——— ®
Path: ‘

J

(Cancel) “ ‘ Connected |

46

To check information about the NXT there is a program called NXTBrowser®.
This gives information such as battery life and firmware version as well as it allows

you to run built-in commands on the robot.

If you get a ‘Line is Busy’ error on the robot it means you did not set it up
correctly in OS X. It may still work intermittently but occasionally you may face

connection errors.

3.1.3 Connecting - Windows XP

Connecting through Windows XP gives more problems if you don’t do it
correctly. While the connection may work temporarily even if you don’t do it right, it
is more prone to flaking out. To connect you must use either Window’s native
Bluetooth drivers or if you company supplied drivers if you have a Widcomm or

Broadcom Bluetooth adapter.

Under my test setup (running Windows XP through VMware or Bootcamp)
connecting can be tricky and inconsistent. There is little documentation online
about using the NXT with VMware and after spending many hours, I still have
problems. There are several different methods that when combined will usually

work.

6 http://web.mac.com/carstenm/Lego/NXT/NXT.html

47

Start by closing any connections in Bluetooth Devices on the NXT, resetting
the NXT and clearing any previous NXT Bluetooth devices from the Bluetooth
Control Panel in Windows (which can be found in the system tray or in the control

panel).

On Windows, in ‘Bluetooth Devices’ click ‘add’ under the ‘Devices’ panel.

Check ‘My device is set up and ready to be found’ and click ‘Next.’

Add Bluetooth Device Wizard

Welcome to the Add Bluetooth
Device Wizard

Before proceeding, refer to the "Bluetooth” section of the
device documentation. Then set up your device so that your
computer can find it:

-Tum it on

- Make it discoverable [visible)

- Give it a name [optional)

- Press the button on the bottom of the device
[keyboards and mice only)

My device is set up and ready to be found.

(1) Add only Blugtooth devices that you trust.

[Nexst > l[Cancel

The NXT should show up as a new device. Select it and click ‘Next.” If it is not

listed make sure the NXT is turned on and click ‘search again.’

Add Bluetooth Device Wizard

Select the Bluetooth device that you want to add. 9®

New device ¢ New device

i L) |f you don't see the device that you want to add, make sure that it is

turned on. Follow the setup instructions that came with the device,
and then click Search Again. Search Again

e

[< Back][Next >][Cancel l

48

Next, select ‘Use the passkey found in the documentation’ or ‘Let me choose

my own passkey.” Either method should work. Enter ‘1234’ as the passkey.

Add Bluetooth Device Wizard

Do you need a passkey to add your device?

To answer this question, refer to the "Bluetooth” section of the documentation that came with
your device. If the documentation specifies a passkey, use that one.

() Choose a passkey for me

(®) Use the passkey found in the documentation: ’1234

(O Let me choose my own passkey: ’

() Don't use a passkey

@ You should always use a passkey, unless your device does not support one. We
i recommend using a passkey that is 8 to 16 digits long. The longer the passkey, the
[more secure it will be.

[< Back][Next >][Cancel

49

If prompted on the NXT, the default the passkey here is also ‘1234’. Click the
orange button (enter) on the NXT. Click next on the computer and you should now
be paired. This does NOT mean you are connected. Your computer and NXT are now

connected but they cannot communicate.

Getting the devices to connect is more complex and can create problems. One

or a combination of the following should allow you connect.

1) In Bluetooth Devices select the NXT and click properties. In the ‘Services’ panel all
of the services should be connected. By default, this may have between zero and two
options, all of which may be either checked or not. All of them should be checked.

NXT Properties @

General Services

This Bluetooth device offers the following services. To use a
service, select the check box.

Serial port (SPP) 'Dev B' COMI5

Learn more about Bluetooth services.

! [oK][Cancel]

50

2) In Bluetooth Devices select the ‘COM Ports’ panel. There should be two

connections - One that is outgoing and one that is incoming.

Bluetooth Devices @

Devices | Options | COM Ports | Hardware

This computer is using the COM (serial) ports listed below. To
determine whether you need a COM port, read the documentation
that came with your Bluetooth device.

Port Direction ~ Name

COM15 Outgoing NXT 'Dev B'
COM17 Incoming NXT

If the outgoing is missing then go to ‘Add’ at the bottom of the window. Select
‘Outgoing’ and change the device to ‘NXT’ in the drop down menu. Choose Dev B and

click ‘OK’

51

Add COM Port 3

Select the type of COM (serial) port that you want to add:
() Incoming {device initiates the connection)
(3) Outgoing (computer initiates the connection)

Device that will use the COM port:

v
Service: P

=)

Learn more about Bluetooth device COM ports, [OK] [Cancel
=ain more about BIuetooth LUM Dorts. 1

3) Go to Bluetooth on the NXT and select ‘search.” You should see your computer
once it’s done searching. Select it and chose any number. It should say “Connecting.”
Once it is done it will either say “Failed,” “Line is busy,” or it will return to computer

selection.

If it returns to the computer selection screen it means that the NXT is
connected. You can check the connection by going back to Bluetooth on the NXT and

selecting ‘Connections.’

If it says “Failed” reset the NXT, delete the connection on the computer, and

try again.

If it says “Line is busy” then it can mean a couple of things. It may actually
work with the computer. If this is the case you should test using available software.

If it doesn’t work then you need to try something else. A combination of the other

52

solutions may work. In this case, the NXT usually detects the computer but is

missing a valid connection.

To use the connection with other programs go to the COM Ports panel in
Bluetooth Devices to check which port is ‘outgoing.’ This port is needed to send

commands to the NXT.

3.1.4 Bluetooth remarks

If you still cannot get the NXT to work, search online. There are dozens of
web posts dedicated to connecting the NXT over Bluetooth. Many go unsolved but
reading through them may provide new problem solving techniques. Make sure you
are using the right drivers and have a compatible device. I have found certain
methods will only work some of the time. According to online posts, if you have the
NXT-G software it is somewhat simpler to set up. This software only comes with the
consumer NXT set. It is available for about $50 for the users of the Educational Kit.
Bluetooth on the NXT is far from perfect and aside from using it with Lego’s own

NXT-G does not have the best support from Lego.

It is worth noting that once you get a consistent connection you may never
have problems again. I kept the same connection for over a month with no

problems.

<html>

Appendix B: Internet Operation Code

nxtControl.php

<meta http-equiv="Pragma" content="no-cache">
<meta http-equiv="Cache-Control" content="no-cache">
<meta http-equiv="Expires" content="Sat, 01 Dec 2001 00:00:00 GMT">

<title>NXT Control</title>

<body>

<body bgcolor = "Gray">

<table>

<td>
<center>
<table>

<form action='update.

<input type="submit"
</form>

<td>

<form action='update.

<input type="submit"
</form>

</td>

<td> </td>

<td>

<form action='update.

<input type="submit"
</form>
</td>

<tr>
<td>
<td>

<form action='update.

<input type="submit"
</form>

</tr></td>

</table>

php?action=Up' method = "post">

value="Up">

php?action=Left'method = "post">
value=" Left ">
php?action=Right'method = "post">

value="Right">

php?action=Down'
value="Down">

method = "post">

<form action='update.php?action=coord' method="post">

X-

<input type="text" name="X" value="15" size=3>

Y:

<input type="text" name="Y" value="20" size=3>
<input type="submit" wvalue = "Point Find">

</form>
</center>
</td><td>

53

<script language="Javascript'">

function reloadPage ()
{
document.images[0].src="map old.jpg";
document.images[0] .src="map.jpg?r=2";

}

setTimeout ('reloadPage () ', 2000);
</script>

</td></table>
</center>
</body>
</html>

54

update.php

Used: update.php?action=Up, update.php?action=Down, update.php?action=Left,

update.php?action=Right, and update.php?action=coord&X=x&Y=y

<html>
<title>NXT Control</title>
<body>
<?php

$file = fopen("C:\\update.txt", "w+");

$value = $ GET['action'];
//S$value = 'coord';
Stime = time () ;
Swritethis = 'Error in php update.txt';
if (Svalue == "Up") //find which button was pushed and create the new
output
{
Sdirections = '1000°';
Scoords = ' 00 00 ';
$comments = ' (UP, DOWN, LEFT, RIGHT | X,Y COORD)';
Swritethis = $directions . S$coords . Scomments . S$Stime;
}
elseif ($value == "Down")
{
Sdirections = '0001°';
Scoords = ' 00 00 ';
Scomments = ' (UP, DOWN, LEFT, RIGHT | X,Y COORD)';
Swritethis = $directions . $coords . S$Scomments . S$Stime;
}
elseif ($value == "Left")
{
Sdirections = '0100°';
Scoords = ' 00 00 ';
Scomments = ' (UP, DOWN, LEFT, RIGHT | X,Y COORD)';
Swritethis = $directions . S$coords . $Scomments . S$Stime;
}
elseif ($Svalue == "Right")
{
Sdirections = '0010°';
Scoords = ' 00 00 ';
Scomments = ' (UP, DOWN, LEFT, RIGHT | X,Y COORD)';
Swritethis = $directions . $coords . Scomments . S$Stime;
}
elseif (Svalue == "coord")
{
$X = § POST['X']; //get X and Y inputs

SY

$ POST['Y'];

if (strlen($X) == 1) S$X = ("O" $X); //make sure the number
2 digits
if (strlen($X) > 2)
{
$length = strlen ($X);
$X = $X($length-2) $X ($length-1) ;
}
if (strlen(SYy) == 1) Sy = ("0O" SY) ;
if (strlen(SY) > 2)
{
$length = strlen(SY);
$Y = $Y($length-2) SY ($length-1); // /keep digits
}
Sdirections = '0000 ';
Scoords = $X . ' ! sy .' ',
$Scomments = ' (UP, DOWN, LEFT, RIGHT | X,Y COORD)';
Swritethis = $directions Scoords Scomments Stime;
}
else
{
echo "no action data";

}

fwrite ($file,
fclose ($file);

Swritethis) ;

header ("location: nxtControl.php");

?>
</body>
</html>

has

56

