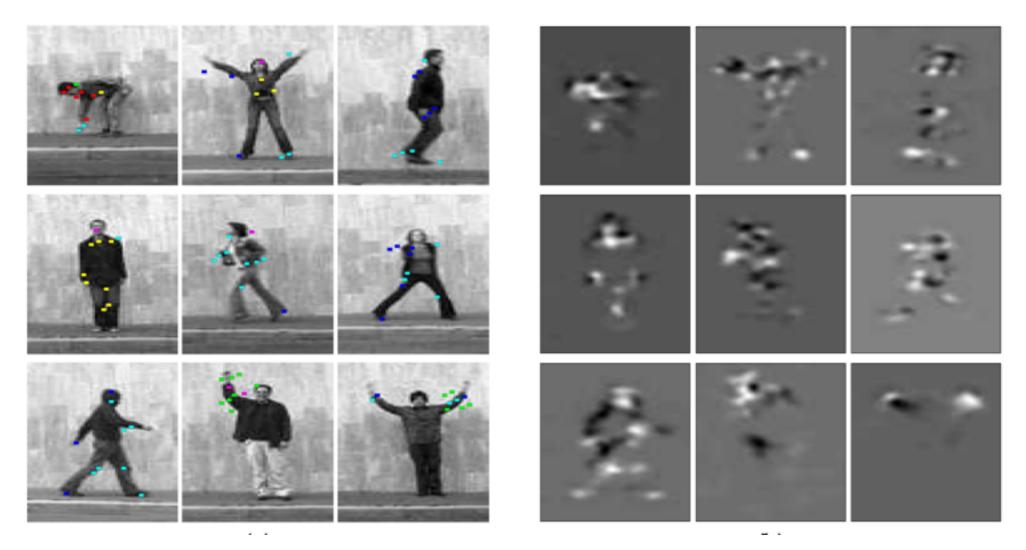
Hidden Part Models for Human Action Recognition: Probabilistic vs. Max-Margin



Yang Wang & Greg Mori (PAMI2011)

Colin Lea - Summer 2014

Data

Goal:

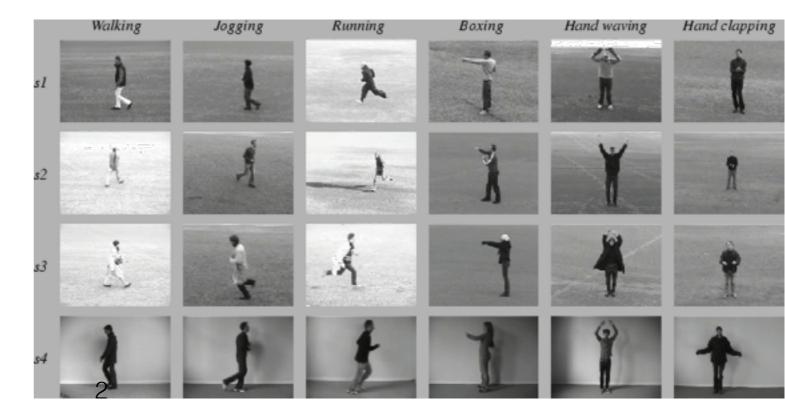
Recognize an action in a short video with a single actor

Weizmann dataset

10 simple actions Run, walk, skip, jump, skip gallup, bend, wave1, wave2, jumping jacks

KTH Dataset

6 simple actions: Walk, Jog, Run, Box, Wave, Clap



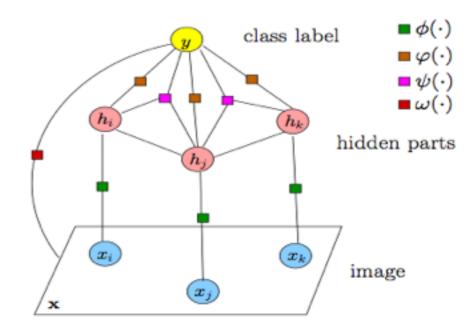
Overview

Goal:

Recognize an action in a short video with a single actor

Approach:

- Inspired by part-based models for humans
 - Use constellation of parts conditioned on image seq.
- Hidden CRF for parts model
- Global + local features

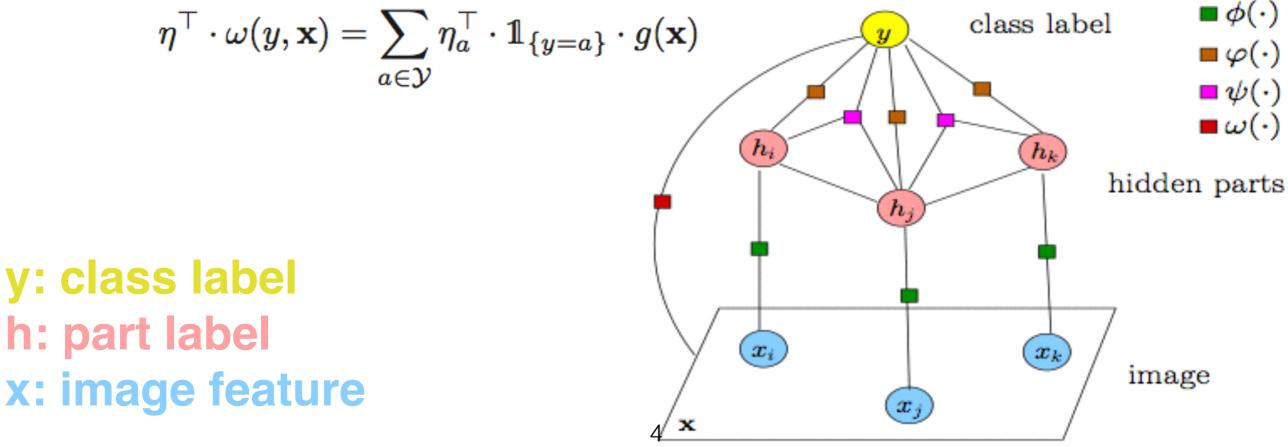


Contributions:

- Novel part-based approach
- Compare probabilistic vs max-margin approach

Model

phi: (unary) concatenation of appearance+spatial features $\alpha^{\top} \cdot \phi(x_j, h_j) = \sum_{c \in \mathcal{H}} \alpha_c^{\top} \cdot \mathbb{1}_{\{h_j=c\}} \cdot [f^a(x_j) f^s(x_j)]$ **phi2**: (unary) likelihood of 1 part label & class $\beta^{\top} \cdot \varphi(y, h_j) = \sum_{c \in \mathcal{H}} \sum_{\beta_{a,b}} \cdot \mathbb{1}_{\{y=a\}} \cdot \mathbb{1}_{\{h_j=b\}}$ **psi**: (pairwise) likelihood of 2+ part labels & class $\gamma^{\top} \cdot \psi(y, h_j, h_k) = \sum_{a \in \mathcal{Y}} \sum_{b \in \mathcal{H}} \sum_{c \in \mathcal{H}} \gamma_{a,b,c} \cdot \mathbb{1}_{\{y=a\}} \cdot \mathbb{1}_{\{h_j=b\}} \cdot \mathbb{1}_{\{h_k=c\}}$ **omega**: (unary) root filter



Model

p(label | data, params)

$$p(\text{label} | \text{data, params}) \qquad p(y|\mathbf{x}; \theta) = \sum_{\mathbf{h} \in \mathcal{H}^{\mathbf{m}}} p(y, \mathbf{h} | \mathbf{x}; \theta)$$
Marginalize over hidden variables
$$= \frac{\sum_{\mathbf{h} \in \mathcal{H}^{m}} \exp(\theta^{\top} \cdot \Phi(\mathbf{x}, \mathbf{h}, y))}{\sum_{\hat{y} \in \mathcal{Y}} \sum_{\mathbf{h} \in \mathcal{H}^{m}} \exp(\theta^{\top} \cdot \Phi(\mathbf{x}, \mathbf{h}, \hat{y}))}$$

 $\blacksquare \phi(\cdot)$

 $\blacksquare \varphi(\cdot)$

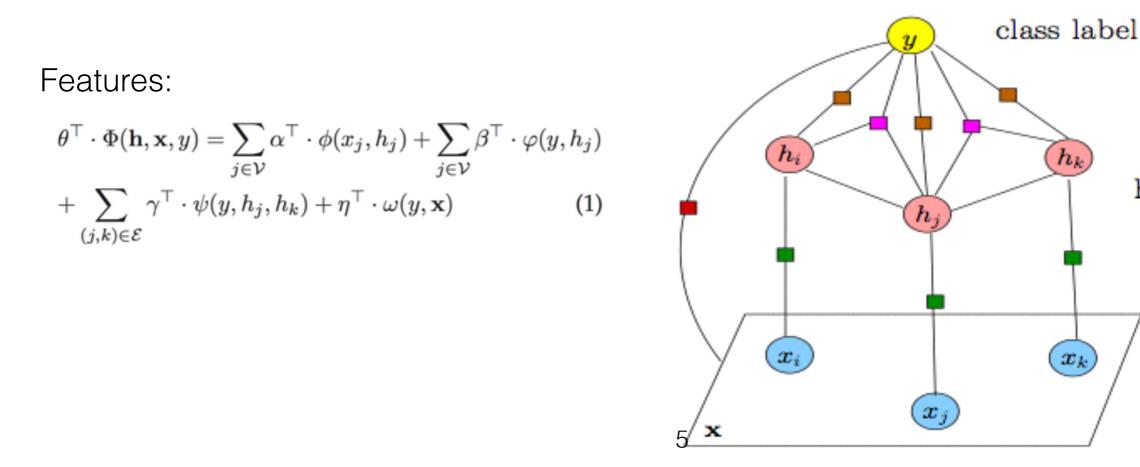
 $\blacksquare \psi(\cdot)$

 $\blacksquare \omega(\cdot)$

hidden parts

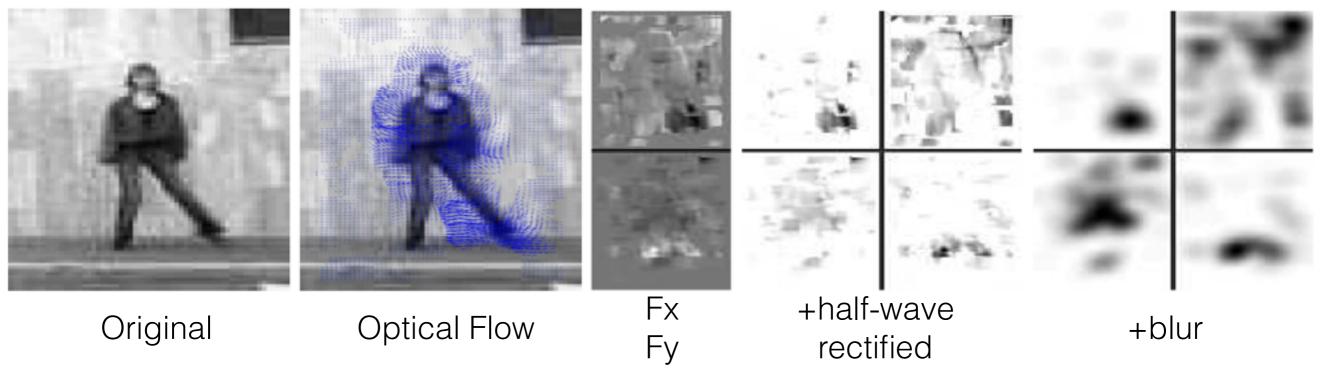
image

- Cluster features into hidden parts h.
- Action ~ action-cluster co-occurrences & features
- Ignore **psi** (pairwise). Small affect on model.



Features

- Motion features: optical flow
 - Lucas Kanade used to track person
 - Assume person front/center of image
 - F b+x, F b-x, F b+y, F b-y (half wave rectified+blur)
- Spatial features:
 - Bit-vector defining relative location of image patches
 - (Vector of length L (=#bins) with 0/1 in each)



Hidden parts use image patches. Root uses whole image

Other details

- Initialize filters/parameters
 - Root filter: (compute over whole image)
 - (omega = feature vector)

$$\eta^* = \arg \max_{\eta} \sum_{t=1}^{N} \log \mathcal{L}^{root}(y^{(t)} | \mathbf{x}^{(t)}; \eta)$$
$$= \arg \max_{\eta} \sum_{t=1}^{N} \log \frac{\exp\left(\eta^{\top} \cdot \omega(y^{(t)}, \mathbf{x}^{(t)})\right)}{\sum_{y} \exp\left(\eta^{\top} \cdot \omega(y, \mathbf{x}^{(t)})\right)}$$

- Hidden parts {6,10,20}: Find top patches from previous equation in training. For test, compute score for all hidden parts.
- Background subtraction is performed (from dataset)

Probabilistic Formulation

Maximize the conditional likelihood:

$$\begin{aligned} \theta^* &= \arg \max_{\theta} \mathcal{L}(\theta) = \arg \max_{\theta} \sum_{t=1}^{N} \mathcal{L}^t(\theta) \\ &= \arg \max_{\theta} \sum_{t=1}^{N} \log p(y^{(t)} | \mathbf{x}^{(t)}; \theta) \\ &= \arg \max_{\theta} \sum_{t=1}^{N} \log \left(\sum_{\mathbf{h}} p(y^{(t)}, \mathbf{h} | \mathbf{x}^{(t)}; \theta) \right) \end{aligned}$$

N=training samples theta=params

Marginalize over hidden parts

Gradient descent:

$$\begin{array}{lll} \frac{\partial \mathcal{L}^{t}(\theta)}{\partial \alpha} &=& \sum_{j \in \mathcal{V}} \left[\mathbb{E}_{p(h_{j}|y^{(t)},\mathbf{x}^{(t)};\theta)} \phi(x_{j}^{(t)},h_{j}) & \frac{\partial \mathcal{L}^{t}(\theta)}{\partial \gamma \mathrm{den}} &=& \sum_{(j,k) \in \mathcal{E}} \left[\mathbb{E}_{p(h_{j},h_{k}|y^{(t)},\mathbf{x}^{(t)};\theta)} \psi(y^{(t)},h_{j},h_{k}) \right] \\ \\ \begin{array}{lll} \mathbf{Appearance} \\ -\mathbb{E}_{p(h_{j},y|\mathbf{x}^{(t)};\theta)} \phi(x_{j}^{(t)},h_{j}) \right] & \mathbf{Pairwise} & -\mathbb{E}_{p(h_{j},h_{k},y|\mathbf{x}^{(t)};\theta)} \psi(y,h_{j},h_{k}) \right] \\ \\ \frac{\partial \mathcal{L}^{t}(\theta)}{\partial \beta} &=& \sum_{j \in \mathcal{V}} \left[\mathbb{E}_{p(h_{j}|y^{(t)},\mathbf{x}^{(t)};\theta)} \varphi(h_{j},y^{(t)}) & \frac{\partial \mathcal{L}^{t}(\theta)}{\partial \eta} &=& \omega(y^{(t)},\mathbf{x}^{(t)}) - \mathbb{E}_{p(y|\mathbf{x}^{(t)};\theta)} \omega(y,\mathbf{x}^{(t)}) \\ \\ \\ \mathbf{Hidden} \\ \mathbf{Unary} & -\mathbb{E}_{p(h_{j},y|\mathbf{x}^{(t)};\theta)} \varphi(h_{j},y) \right] & \mathbf{8} \\ \end{array}$$

Max Margin Formulation (1/3)Same as LSSVM $f_{\theta}(\mathbf{x}, y) = \max_{\mathbf{h}} \theta^{\top} \Phi(\mathbf{x}, \mathbf{h}, y)$

$$\min_{\substack{\theta,\xi}} \quad \frac{1}{2} ||\theta||^2 + C \sum_{t=1}^{N} \xi^{(t)}$$
s.t.
$$\max_{\mathbf{h}} \theta^{\top} \Phi(\mathbf{x}^{(t)}, \mathbf{h}, y) - \max_{\mathbf{h}'} \theta^{\top} \Phi(\mathbf{x}^{(t)}, \mathbf{h}', y^{(t)})$$

$$\leq \xi^{(t)} - \delta(y, y^{(t)}), \quad \forall t, \quad \forall y$$
where
$$\delta(y, y^{(t)}) = \begin{cases} 1 & \text{if } y \neq y^{(t)} \\ 0 & \text{otherwise} \end{cases}$$
(11)
Loss function

Not convex because of hidden nodes Alternative: Use CCCP from the LSSVM paper

Max Margin Formulation (2/3)

Coordinate Descent

1) Fixing θ, ξ , optimize the latent variable h for each pair $\langle \mathbf{x}^{(t)}, y \rangle$ of an example $\mathbf{x}^{(t)}$ and a possible labeling *y*:

2) Fixing $\mathbf{h}_{y}^{(t)} \quad \forall t, \quad \forall y$, optimize θ, ξ by solving the following optimization problem:

$$\begin{split} \min_{\boldsymbol{\theta}, \boldsymbol{\xi}} & \frac{1}{2} ||\boldsymbol{\theta}||^2 + C \sum_{t=1}^{N} \boldsymbol{\xi}^{(t)} & \text{SMO-like algorithm} \\ \text{s.t.} & \boldsymbol{\theta}^{\top} \boldsymbol{\Phi}(\mathbf{x}^{(t)}, \mathbf{h}_{y}^{(t)}, y) - \boldsymbol{\theta}^{\top} \boldsymbol{\Phi}(\mathbf{x}^{(t)}, \mathbf{h}_{y^{(t)}}^{(t)}, y^{(t)}) \\ & \leq \boldsymbol{\xi}^{(t)} - \delta(y, y^{(t)}), \quad \forall t, \quad \forall y \quad (16) \end{split}$$

Max Margin Formulation (3/3)

Similar to SMO (Except h varies with x) 2) Fixing $\mathbf{h}_{y}^{(t)} \quad \forall t, \quad \forall y$, optimize θ, ξ by solving the following optimization problem:

$$\min_{\boldsymbol{\theta},\boldsymbol{\xi}} \quad \frac{1}{2} ||\boldsymbol{\theta}||^2 + C \sum_{t=1}^{N} \boldsymbol{\xi}^{(t)}$$
s.t.
$$\boldsymbol{\theta}^{\top} \Phi(\mathbf{x}^{(t)}, \mathbf{h}_y^{(t)}, y) - \boldsymbol{\theta}^{\top} \Phi(\mathbf{x}^{(t)}, \mathbf{h}_{y^{(t)}}^{(t)}, y^{(t)})$$

$$\leq \boldsymbol{\xi}^{(t)} - \delta(y, y^{(t)}), \quad \forall t, \quad \forall y$$
(16)

Optimize parameters w/ dual:

$$\max_{\alpha} \sum_{t=1}^{N} \sum_{y} \alpha_{t,y} \delta(y, y^{(t)}) - \frac{1}{2} || \sum_{t=1}^{N} \sum_{y} \alpha_{t,y} \Psi(\mathbf{x}^{(t)}, y) ||^{2}$$

s.t.
$$\sum_{y} \alpha_{t,y} = C, \quad \forall t$$

$$\alpha_{t,y} \ge 0, \quad \forall t, \quad \forall y$$
(17)

Quadratic programing problem:

$$\begin{split} \mathcal{L}(\{\alpha_{t,y}:\forall y\}) \\ &= \sum_{y} \alpha_{t,y} \delta(y, y^{(t)}) - \frac{1}{2} \Biggl[|| \sum_{y} \alpha_{t,y} \Psi(\mathbf{x}^{(t)}, y) ||^2 \\ &+ 2 \Bigl(\sum_{y} \alpha_{t,y} \Psi(\mathbf{x}^{(t)}, y) \Bigr)^\top \Bigl(\sum_{s:s \neq t} \sum_{y'} \alpha_{s,y'} \Psi(\mathbf{x}^{(s)}, y') \Bigr) \\ &+ \text{other terms not involving } \{\alpha_{t,y}: \forall y\} \end{split}$$

$$\max_{\substack{\alpha_{t,y}:\forall y \\ \text{s.t.}}} \mathcal{L}(\{\alpha_{t,y}:\forall y\}) \\ \sum_{\substack{y \\ \alpha_{t,y} \geq 0, \quad \forall y}} \mathcal{L}(\{\alpha_{t,y}:\forall y\})$$

Weizmann Results

83 videos. 9 people. 9 actions Train on 5, test on 4

	per-frame	per-video	per-cube		
MMHCRF	0.9311	1	N/A		
HCRF	0.9029	0.9722	N/A		
Jhuang et al. [22]	N/A	0.988	N/A		
Niebles & Fei-Fei [24]	0.55	0.728	N/A		
Blank et al. [9]	N/A	N/A	0.9964		
* No tracking					

band ack jump piump side walk waver

(b) per-video

bendiack lumpium side walk waves

(a) per-frame

bendiack ium pium un side walk waves

(b) per-video

bendiack ium pium side walk waves (a) per-frame

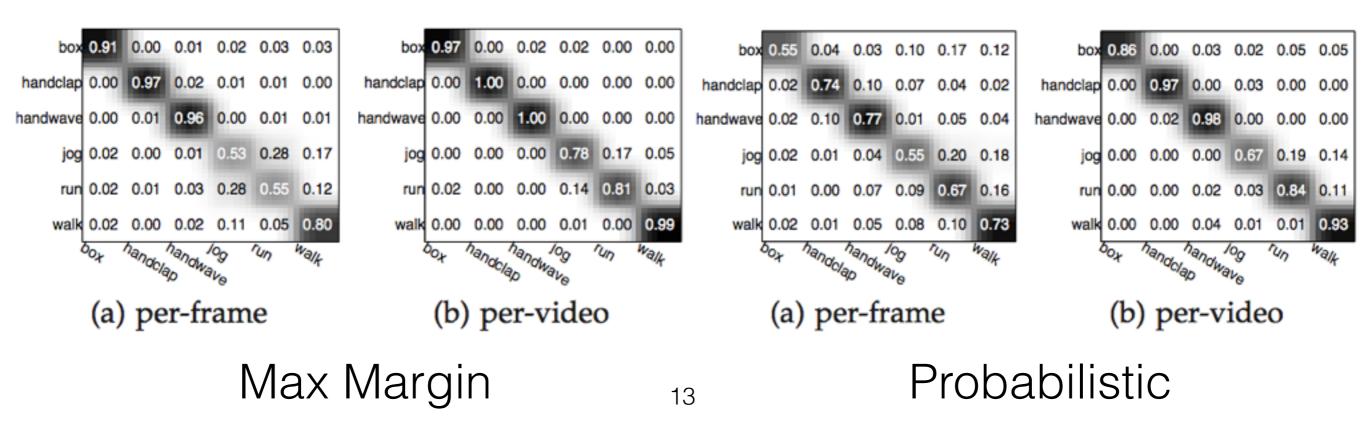
Probabilistic

Max Margin

KTH Results

25 users, 4 scenes, 6 actions "roughly half" train/test

methods	accuracy	
MMHCRF	0.9251	
HCRF	0.8760	
Liu & Shah [50]	0.9416	
Jhuang et al. [22]	0.9170	
Nowozin et al. [13]	0.8704	
Niebles et al. [12]	0.8150	
Dollár et al. [11]	0.8117	
Schuldt et al. [14]	0.7172	
Ke et al. [51]	0.6296	



Alternative models (1/2)

		method	Weizmann		KTH	
		memou	per-frame	per-video	per-frame	per-video
	1	root model	0.7470	0.8889	0.5377	0.7339
•	local HCRF					
No root 2		$ \mathcal{H} =6$	0.5722	0.5556	0.4749	0.5607
	2	<i>H</i> =10	0.6656	0.6944	0.4452	0.5814
	-	<i>H</i> =20	0.6383	0.6111	0.4282	0.5504
Prob 3		HCRF				
	3	$ \mathcal{H} =6$	0.8682	0.9167	0.6633	0.7855
		$ \mathcal{H} =10$	0.9029	0.9722	0.6698	0.8760
		<i>H</i> =20	0.8557	0.9444	0.6444	0.7512
		MMHCRF				
Max Margin 4		$ \mathcal{H} =6$	0.8996	0.9722	0.7064	0.8475
		$ \mathcal{H} =10$	0.9311	1.0000	0.7853	0. <mark>9251</mark>
		<i>H</i> =20	0.8891	0.9722	0.7486	0.8966

Alternative models (2/2)

Experiment 1: Remove pairwise terms Experiment 2: Exp1 + Convert to N 1-vs-all LSVMs (N=class) Experiment 3: Train SVM on Exp 2 outputs.

All experiments using Max Margin version Pairwise on avg. ~1% better

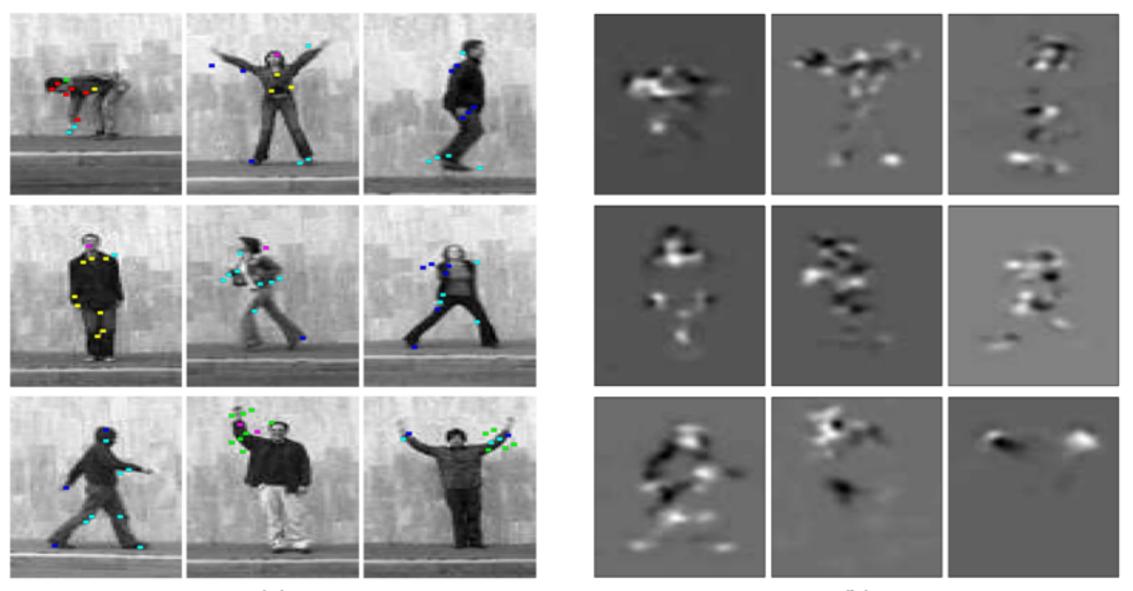
Full model

method	Weizmann		KTH	
metriou	per-frame	per-video	per-frame	per-video
MMHCRF				
$ \mathcal{H} =6$	0.8996	0.9722	0.7064	0.8475
$ \mathcal{H} =10$	0.9311	1.0000	0.7853	0.9251
<i>H</i> =20	0.8891	0.9722	0.7486	0.8966

method	Weizmann		KTH	
nieutou	per-frame per-video		per-frame per-vide	
no pairwise				
$ \hat{\mathcal{H}} = 6$	0.8344	0.9062	0.6767	0.8527
$ \mathcal{H} = 10$	0.8414	0.9688	0.7005	0.8941
$ \mathcal{H} = 20$	0.8358	0.9688	0.6891	0.8734
one-against-all				
$ \mathcal{H} = 6$	0.7525	0.8889	0.5171	0.6589
$ \mathcal{H} = 10$	0.7507	0.8611	0.5052	0.6589
$ \mathcal{H} = 20$	0.7447	0.8889	0.5052	0.6899
one-against-all				
+ SVM				
$ \mathcal{H} = 6$	0.8173	0.9444	0.5705	0.7209
$ \mathcal{H} = 10$	0.8460	0.9444	0.5610	0.7287
$ \mathcal{H} = 20$	0.8145	0.9444	0.5623	0.7442

Part/filter visualization (Weizmann)

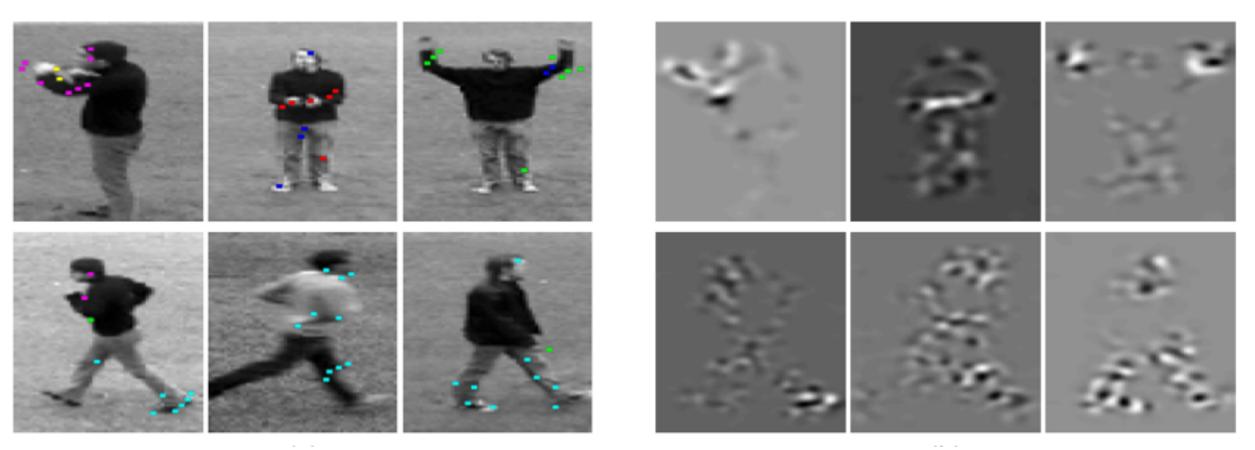
Colors = class of hidden part Red: moving down Green: hand waving



Filters (per class)

Part/filter visualization (KTH)

Colors = class of hidden part Pink: boxing Red: clapping Green: waving



Filters (per class)

Takeaways

Good

- Max margin > Probabilistic (~5% acc. here)
- Nice analysis of each component
 - e.g. Root filter + pairwise analysis
- Local+global features >> Global features

Bad

- Does this generalize to other datasets??
 - Weizmann and KTH are very similar and too simple
- No temporal component
- [Pet peeve: introduce a lot of unused math due to model assumptions]