Hallucinated Humans as the Hidden Context for Labeling 3D Scenes

CVPR 2013

Yun Jiang, Hema Koppula and Ashutosh Saxena Department of Computer Science, Cornell University.

{yunjiang,hema,asaxena}@cs.cornell.edu

Colin Lea – June 2013

Overview

We make the world we live in and shape our own environment. Orison Swett Marden (1894).

Goal: learn hidden **human-object** relationships and use this as a cue for labeling scenes

Figure 1: Left: Previous approaches model the relations between observable entities, such as the objects. Right: In our work, we consider the relations between the objects and hidden humans. Our key hypothesis is that even when the humans are never observed, the human context is helpful.

Data

Cornell RGB-D indoor dataset 24 offices, 28 homes, 550 RGB-D views.

Segments can have 1 object label, multiple attributes

Attributes: {wall, floor, flat horizontal surfaces, furniture, fabric, heavy, seating-areas, small-objects, table-top-objects, electronics} [10x]

Objects: {wall, floor, tableTop, tableDrawer, tableLeg, chairBackRest, chairBase, chairBack, monitor, printerFront, printerSide, keyboard, cpuTop, cpuFront, cpuSide, laptop, book, paper, sofaBase, sofaArm, sofaBackRest, bed, bedSide, quilt, pillow, shelfRack} [26x]

Hallucinating Humans for Robotic Scene Understanding

Yun Jiang and Ashutosh Saxena

Cornell University

Approach

<u>Procedure</u>: Take 3D pointcloud and label objects using shape, appearance and hallucinated human context

New Model: Infinite Factored Topic Model (IFTM)

Topics for (a) human context (b) object affordance

Topics used as features for scene label classifier

Human Context

Object Affordance

(b) 2D infinite factored topic model

Representation

Human Configuration:

Pose library (6 configs)

{Pose, X, Y, Z, Theta}

[From CAD-60 dataset]

Figure 2: Six types of human poses extracted from Kinect

Object Affordance:

Distribution over {X,Y,Z,Theta}
relative to human pose
e.g. Small objects close to human
Books can be close to *or* far away

Mixture of topics!

Priors

Human Configuration:

Physics:

- 1) Kinematics: Collisions detection
- 2) Dynamics: supported by ground?

Figure 2: Six types of human poses extracted from Kinect

Object Affordance:

- 1) Proximity (should be close)
- 2) Symmetry (left/right)

Infinite Factored Topic Model

Background: DP Mixture Model

Process for drawing data from set of topics

$$\theta_k \sim G$$
, $b_k \sim Beta(1, \alpha)$, $\pi_k = b_k \prod_{i=1}^{k-1} (1 - b_i)$. $x|z, \theta \sim F(\theta_z)$.

- -Gibbs sampling to get marginal distrbution of z_i, theta_k
- -Get pi from stick breaking
- -Sample topic (z) from Chinese Restaurant Process

$$z|\pi \sim \pi;$$
 $z_i = z|z^{-i} = egin{cases} rac{n_z^{-i}}{N-1+lpha} & ext{if } z ext{ is previously used} \ rac{lpha}{N-1+lpha} & ext{otherwise} \end{cases}$

Benefits over GMM:

Prior over topics

Variable number of topics

Infinite Factored Topic Model

Each (L) topic determined independently

```
xi = 3D location of ith object in the scene
[log-normal,von Mises, normal]
```

$$F(xi;Theta^{H},Theta^{O}) = F_{distance}F_{rel_angle}F_{height}$$

Theta^H = human pose

G^O = Normal distribution

G^H = uniform over valid poses

Learning Topics

Gibbs sampling to sample Thetas

Step 1) Sample topic assignments

$$\begin{split} z_i^H &= z \quad \propto \quad \begin{cases} \frac{n_{-i,z}^H}{N+m-1+\alpha^H} F(x_i,\theta_z^H,\theta_{z_i^O}^O) & n_{-i,z}^H \geq 0, \\ \frac{\alpha^H/m}{N+m-1+\alpha^H} F(x_i,\theta_z^H,\theta_{z_i^O}^O) & \text{otherwise} \end{cases} \\ z_i^O &= z \quad \propto \quad \begin{cases} \frac{n_{-i,z}^O}{N+m-1+\alpha^O} F(x_i,\theta_{z_i^H}^H,\theta_z^O) & n_{-i,z}^O \geq 0, \\ \frac{\alpha^O/m}{N+m-1+\alpha^O} F(x_i,\theta_{z_i^H}^H,\theta_z^O) & \text{otherwise} \end{cases} \end{split}$$

Step 2) MAP of Thetas [Posterior is too expensive!] Calculate argmax of means, variances, concentrations

Scene Labeling

Use sampled affordances as features

Set affordance topics as top K sampled topics Theta^o For new scene:

Repeatedly sample z_iO,z_iH,thetaH

Create histogram of sampled z_iO as feature

Classify with "other" algorithm [No details!!]

Results & Discussion

Node features for segment i.

rode reatures for segment t.	
Description	Count
Visual Appearance	48
N1. Histogram of HSV color values	14
N2. Average HSV color values	3
N3. Average of HOG features of the blocks in im-	31
age spanned by the points of a segment	
Local Shape and Geometry	8
N4. linearness (λ_{i0} - λ_{i1}), planarness (λ_{i1} - λ_{i2})	2
N5. Scatter: λ_{i0}	1
N6. Vertical component of the normal: \hat{n}_{iz}	1
N7. Vertical position of centroid: c_{iz}	1
N8. Vert. and Hor. extent of bounding box	2
N9. Dist. from the scene boundary (Fig. 2)	1

	K			Object Labeling						
Algorithm	Image & Human Obj-obj			O	ffice Scen	ies	Home Scenes			
	Shape	Context	Context	micro macro			micro	macro		
				P/R	prec	recall	P/R	prec	recall	
chance				5.88	5.88	5.88	5.88	5.88	5.88	
max class				26.33	26.33	5.88	29.38	29.38	5.88	
Affordances		✓		29.13	16.28	16.67	33.62	16.37	15.30	
Appearance	✓			77.97	69.44	66.23	56.50	37.18	34.73	
Afford. + Appear.	✓	✓		79.71	73.45	69.76	59.00	38.86	37.54	
Koppula et al. [19]	√		√	84.06	80.52	72.64	73.38	56.81	54.80	
Full Model	✓	✓	✓	85.22	83.20	74.11	72.50	59.07	56.02	

Results

				Attribute Labeling								
Algorithm	Image & Human Obj-obj		Obj-obj	Office Scenes				Home Scenes				
	Shape	Context	Context	micro		macro		micro		macro		
				prec	recall	prec	recall	prec	recall	prec	recall	
chance				12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	
max class				22.89	22.89	22.89	12.5	31.4	31.4	31.4	12.5	
Affordances		✓		47.93	32.04	42.85	29.83	53.92	36.07	41.19	26.21	
Appearance	✓			85.82	66.48	86.58	62.52	77.80	55.21	60.01	42.20	
Afford. + Appear.	✓	✓		87.05	68.88	87.24	65.42	79.02	59.02	70.45	46.57	
Koppula et al. [19]	✓		✓	87.92	71.93	84.04	67.96	83.12	70.03	76.04	58.18	
Full Model	✓	✓	✓	88.40	76.73	85.58	74.16	83.42	70.28	79.93	64.27	

Results

Figure 8: Confusion matrices for office dataset (left) and home dataset (right) using the full model.

Are the sampled human poses meaningful?

- -sitting on the edge of the bed
- -standing close to the desk (easy access to table+shelf)
- -on chairs with correct orientation (office scene)
- -successfully identifies the workspaces in the office
- -naturally explain arrangement of monitors, keyboards and computers

Are the discovered affordances meaningful?

- +chairBase is often associated with a sitting pose
- +computers can either be on the table or on the floor

- -wall is more to the front than back
- -monitor is biased to the side

Biases are attributed to lack of data and imperfect "valid" poses (errors in physics model)

Are the discovered affordances meaningful?

Figure 6: Examples of learned object-affordance topics. An affordance is represented by the probabilistic distribution of an object in a $5 \times 5 \times 3$ space given a human pose. We show both projected top views and side views for different object classes.

Can we obtain object-object relations from object 🔪 🥒 affordances?

Yes — Convolve human-object relations

e.g. keyboard-human x human-monitor

Can model N² obj-obj relations w/ only N human-obj relations!

Figure 7: Object-object context obtained from our learned human context. Each pair of the top- and side-view of a heatmap with the title of 'obj1-obj2' shows the distribution of obj1 given obj2 at the center facing right. For example, in the first row the keyboard is in the center of the image and the heat-maps show the probability of finding other related objects such as table top, monitor, etc.

Does human context helps in scene labeling?

Yes... see results

However, using both human-object + obj-obj is better. (Especially for small objects)

Takeaways

Good:

- Requires less training data because of pose sampling
- Naturally discovers hidden relationships and affordances

Bad:

 Appears to have a lot of bias [unsure if the model or the lack of data is the problem]